在Rt△ABC中,∠BAC
π
2
,AB=AC=6,
BD
=2
BC
.求
AB
AD
 的值.
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:由題意可得
AD
=
AB
+
BD
=
AB
+2
BC
=
AB
+2(
AC
-
AB
),即可求得
AB
AD
的值.
解答: 解:∵
AD
=
AB
+
BD
=
AB
+2
BC
=
AB
+2(
AC
-
AB
),
AB
AD
=
AB
•[
AB
+2(
AC
-
AB
)]=-
AB
2=-36.
點評:本題主要考查向量在幾何中的應用,考查學生的向量運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

解關于x的不等式|
3x
x2-4
|≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

到兩坐標軸距離相等的點的軌跡方程是( 。
A、y=x
B、x2-y2=0
C、y=-x
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若3a=0.628,a∈[k,k+1],(k∈Z),則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x2-1)-x,試判斷f(x)的單調(diào)性并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義一種運算“*”:對于自然數(shù)n滿足以下運算性質(zhì):
(1)1*1=1,(2)(n+1)*1=n*l+1,則n*1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=lnx+x的零點位于區(qū)間( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的平面圖形中,已知
OA
=
a
,
OB
=
b
,點A、B分別是線段CE、ED的中點.
(1)試用
a
、
b
表示
CD
;
(2)若|
a
|=1,|
b
|=2且
a
b
夾角θ∈[
π
3
,
3
],試求|
CD
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各式中正確的是( 。
A、40.7<40.3
B、0.7-1<0.7-2
C、log40.7<log40.3
D、log34<log43

查看答案和解析>>

同步練習冊答案