【題目】我國(guó)南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書(shū)里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就.楊輝三角中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,則此數(shù)列的前55項(xiàng)和為( )

A. 4072B. 2026C. 4096D. 2048

【答案】A

【解析】

利用n次二項(xiàng)式系數(shù)對(duì)應(yīng)楊輝三角形的第n+1行,然后令x1得到對(duì)應(yīng)項(xiàng)的系數(shù)和,結(jié)合等比數(shù)列和等差數(shù)列的公式進(jìn)行轉(zhuǎn)化求解即可.

解:由題意可知:每一行數(shù)字和為首項(xiàng)為1,公比為2的等比數(shù)列,

則楊輝三角形的前n項(xiàng)和為Sn2n1

若去除所有的為1的項(xiàng),則剩下的每一行的個(gè)數(shù)為12,3,4,……,可以看成構(gòu)成一個(gè)首項(xiàng)為1,公差為1的等差數(shù)列,

Tn,

可得當(dāng)n10,所有項(xiàng)的個(gè)數(shù)和為55

則楊輝三角形的前12項(xiàng)的和為S122121,

則此數(shù)列前55項(xiàng)的和為S12234072

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從一批產(chǎn)品中抽取200盒作為樣本,測(cè)量產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,該指標(biāo)值越高越好.由測(cè)量結(jié)果得到如下頻率分布直方圖:

(Ⅰ)求,并試估計(jì)這200盒產(chǎn)品的該項(xiàng)指標(biāo)的平均值;

(Ⅱ)① 用樣本估計(jì)總體,由頻率分布直方圖認(rèn)為產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,計(jì)算該批產(chǎn)品指標(biāo)值落在上的概率;參考數(shù)據(jù):附:若,則,.

②國(guó)家有關(guān)部門(mén)規(guī)定每盒產(chǎn)品該項(xiàng)指標(biāo)不低150均為合格,且按指標(biāo)值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個(gè)等級(jí),其中為優(yōu)良,不高于180為合格,不低于220為優(yōu)秀,在①的條件下,設(shè)公司生產(chǎn)該產(chǎn)品1萬(wàn)盒的成本為15萬(wàn)元,市場(chǎng)上每盒該產(chǎn)品的等級(jí)售價(jià)(單位:元)如圖表,求該公司每萬(wàn)盒的平均利潤(rùn).

等級(jí)

合格

優(yōu)良

優(yōu)秀

價(jià)格

10

20

30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】9名學(xué)生在同一間教室參加一次數(shù)學(xué)競(jìng)賽,座位排列成33列,用的方格棋盤(pán)表示,其中,每個(gè)方格代表一個(gè)座位為了避免舞弊,采用A、B、C三種類(lèi)型的試卷,要使任何兩個(gè)相鄰的座位(有公共邊的兩個(gè)方格)發(fā)放的試卷類(lèi)型不同則符合條件的發(fā)放試卷的方法共有________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的菱形中,.點(diǎn),分別在邊,上,點(diǎn)與點(diǎn),不重合,,.沿翻折到的位置,使平面平面.

(1)求證:平面;

(2)當(dāng)與平面所成的角為時(shí),求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)的參數(shù)方程為為參數(shù)),,曲線(xiàn)的極坐標(biāo)方程為.

1)求直線(xiàn)的普通方程及曲線(xiàn)的直角坐標(biāo)方程;

2)若直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),設(shè)中點(diǎn)為,求弦長(zhǎng)以及.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知,為拋物線(xiàn)上兩點(diǎn),為拋物線(xiàn)焦點(diǎn).分別過(guò),作拋物線(xiàn)的切線(xiàn)交于點(diǎn).

(1)若,求;

(2)若,分別交軸于,兩點(diǎn),試問(wèn)的外接圓是否過(guò)定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿(mǎn)足,,則下列說(shuō)法正確的是(

A.處取得極小值,極小值為

B.只有一個(gè)零點(diǎn)

C.上恒成立,則

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,短軸長(zhǎng)為4.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)點(diǎn)作兩條直線(xiàn),分別交橢圓,兩點(diǎn)(異于點(diǎn)).當(dāng)直線(xiàn),的斜率之和為定值時(shí),直線(xiàn)是否恒過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,點(diǎn)在平面內(nèi)運(yùn)動(dòng),使得二面角的平面角與二面角的平面角互余,則點(diǎn)的軌跡是( )

A. 一段圓弧 B. 橢圓的一部分 C. 拋物線(xiàn) D. 雙曲線(xiàn)的一支

查看答案和解析>>

同步練習(xí)冊(cè)答案