(本小題滿分10分)
已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.
(1) a=2 (2) (-∞,5).
【解析】
試題分析:解法一:(1)由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.
又已知不等式f(x)≤3的解集為{x|-1≤x≤5},
所以解得a=2.
(2)當a=2時,f(x)=|x-2|.設g(x)=f(x)+f(x+5),
于是g(x)=|x-2|+|x+3|=
所以當x<-3時,g(x)>5;當-3≤x≤2時,g(x)=5;當x>2時,g(x)>5.
綜上可得,g(x)的最小值為5.
從而,若f(x)+f(x+5)≥m,即g(x)≥m對一切實數(shù)x恒成立,
則m的取值范圍為(-∞,5].
解法二:(1)同解法一.
(2)當a=2時,f(x)=|x-2|,設g(x)=f(x)+f(x+5).
由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(當且僅當-3≤x≤2時等號成立)得,g(x)的最小值為5.
從而,若f(x)+f(x+5)≥m,即g(x)≥m對一切實數(shù)x恒成立,
則m的取值范圍為(-∞,5).
考點:絕對值不等式的解法;函數(shù)恒成立問題.
點評:本題考查函數(shù)恒成立問題,絕對值不等式的解法,考查轉化思想,是中檔題.
科目:高中數(shù)學 來源: 題型:
|
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com