一個(gè)路口的紅綠燈,紅燈的時(shí)間為30秒,黃燈的時(shí)間為5秒,綠燈的時(shí)間為
40秒,當(dāng)你到達(dá)路口時(shí)看見(jiàn)下列三種情況的概率各是多少?
(1) 紅燈     (2) 黃燈   (3) 不是紅燈
0.4,,0.6

試題分析:解:總的時(shí)間長(zhǎng)度為秒,設(shè)紅燈為事件,黃燈為事件,
(1)出現(xiàn)紅燈的概率  4分
(2)出現(xiàn)黃燈的概率  8分
(3)不是紅燈的概率· 12分
點(diǎn)評(píng):主要是考查了幾何概型的簡(jiǎn)單運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

乒乓球單打比賽在甲、乙兩名運(yùn)動(dòng)員間進(jìn)行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.
(1)求甲以4比1獲勝的概率;
(2)求乙獲勝且比賽局?jǐn)?shù)多于5局的概率;
(3)求比賽局?jǐn)?shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)某種動(dòng)物由出生算起活到10歲的概率為0.9,活到15歲的概率為0.6.現(xiàn)有一個(gè)10歲的這種動(dòng)物,它能活到15歲的概率是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a, b.
(1)求直線ax+by+5=0與圓 相切的概率;
(2)將a,b,5的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某高校數(shù)學(xué)系計(jì)劃在周六和周日各舉行一次主題不同的心理測(cè)試活動(dòng),分別由李老師和張老師負(fù)責(zé),已知該系共有位學(xué)生,每次活動(dòng)均需該系位學(xué)生參加(都是固定的正整數(shù)).假設(shè)李老師和張老師分別將各自活動(dòng)通知的信息獨(dú)立、隨機(jī)地發(fā)給該系位學(xué)生,且所發(fā)信息都能收到.記該系收到李老師或張老師所發(fā)活動(dòng)通知信息的學(xué)生人數(shù)為
(Ⅰ)求該系學(xué)生甲收到李老師或張老師所發(fā)活動(dòng)通知信息的概率;
(Ⅱ)求使取得最大值的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

袋中有紅、黃、白三種顏色的球各一個(gè),從中每次取一只,有放回的抽取三次,
求:(1)3只球顏色全相同的概率;
(2)3只球顏色不全相同的概率;
(3)3只球顏色全不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)隨機(jī)變量,則的值為_(kāi)____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺(jué)性都一樣),F(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績(jī),得到莖葉圖:

(Ⅰ)依莖葉圖判斷哪個(gè)班的平均分高?
(Ⅱ)現(xiàn)從甲班高等數(shù)學(xué)成績(jī)不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率;
(Ⅲ)學(xué)校規(guī)定:成績(jī)不低于85分的為優(yōu)秀,請(qǐng)?zhí)顚?xiě)下面的列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)?”
 
甲班
乙班
合計(jì)
優(yōu)秀
 
 
 
不優(yōu)秀
 
 
 
合計(jì)
 
 
 
下面臨界值表僅供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙、丙三人獨(dú)立參加某企業(yè)的招聘考試,根據(jù)三人的專業(yè)知識(shí)、應(yīng)試表現(xiàn)、工作經(jīng)驗(yàn)等綜合因素,三人被招聘的概率依次為表示被招聘的人數(shù)。
(1)求三人中至少有一人被招聘的概率;
(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊(cè)答案