中, ,平分于點(diǎn).
證明:(1)
(2)

證明: (1)由題意…………2分
由正弦定理知: ①   
同理 ②       …………4分
由①、②可知 ,      …………6分
(2)在邊上截取,連接
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/fc/4/1f5jb3.gif" style="vertical-align:middle;" />, ∴ ,
,∴,                
四點(diǎn)共圓. ………… 8分
又∵, ∴ (等角對(duì)等弦), 
, ∴, 即 ,…………10分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB =AC,直線MN切⊙O于點(diǎn)C,弦BD∥MN,AC與BD相交于點(diǎn)E.
(1)求證:△ABE≌△ACD;
(2)若AB =6,BC =4,求AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
如圖,AB是O的直徑,BE為圓0的切線,點(diǎn)c為o 上不同于A、B的一點(diǎn),AD為的平分線,且分別與BC 交于H,與O交于D,與BE交于E,連結(jié)BD、CD.

(I )求證:BD平分
(II)求證:AH•BH=AE•HC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知,如圖,AB是⊙O的直徑,G為AB延長線上的一點(diǎn),GCD是⊙O的割線,過點(diǎn)G作AB的垂線,交直線AC于點(diǎn)E,交AD于點(diǎn)F,過G作⊙O的切線,切點(diǎn)為H.

求證:(1)C,D,F(xiàn),E四點(diǎn)共圓;
(2)GH2=GE·GF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是⊙的直徑,是⊙上的點(diǎn),的角平分線,過點(diǎn)點(diǎn)作,交的延長線于點(diǎn),,垂足為點(diǎn),

⑴求證:是⊙的切線    
⑵求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E。
求證:(1);
(2)DEDC=AEBD。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若直線L的參數(shù)方程為為參數(shù)),則直線L的傾斜角的余弦值為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4-1:幾何證明選講
如圖所示,圓的直徑為圓周上一點(diǎn),,過作圓的切線,過的垂線,垂足為,求∠DAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


(本小題滿分10分)

圓的兩條弦AB、CD交于點(diǎn)F,從F點(diǎn)引BC的平行線和直線
DA的延長線交于點(diǎn)P,再從點(diǎn)P引這個(gè)圓的切線,切點(diǎn)是Q
求證:PF=PQ.

查看答案和解析>>

同步練習(xí)冊(cè)答案