(本小題滿分12分)
海關(guān)對(duì)同時(shí)從三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測(cè),從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如右表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進(jìn)行檢測(cè)

地區(qū)



數(shù)量
50
150
100
 
(1)求這6件樣品中來自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)一步檢測(cè),求這2件商品來自相同地區(qū)的概率.

(1) A,B,C三個(gè)地區(qū)的商品被選取的件數(shù)分別為1,3,2.
(2)這2件商品來自相同地區(qū)的概率為.

解析試題分析:(1)首先確定樣本容量與總體中的個(gè)數(shù)的比是,
從而得到樣本中包含三個(gè)地區(qū)的個(gè)體數(shù)量分別是:
,.
(2)設(shè)6件來自A,B,C三個(gè)地區(qū)的樣品分別為,
寫出抽取的這2件商品構(gòu)成的所有基本事件:
,,
,
,共15個(gè).
記事件D:“抽取的這2件商品來自相同地區(qū)”,
寫出事件D包含的基本事件:
共4個(gè).
由每個(gè)樣品被抽到的機(jī)會(huì)均等,因此這些基本事件的出現(xiàn)是等可能的,
利用古典概型概率的計(jì)算公式得解.
試題解析:(1)因?yàn)闃颖救萘颗c總體中的個(gè)數(shù)的比是,
所以樣本中包含三個(gè)地區(qū)的個(gè)體數(shù)量分別是:
,,
所以A,B,C三個(gè)地區(qū)的商品被選取的件數(shù)分別為1,3,2.
(2)設(shè)6件來自A,B,C三個(gè)地區(qū)的樣品分別為,
則抽取的這2件商品構(gòu)成的所有基本事件為:
,,
,
,共15個(gè).
每個(gè)樣品被抽到的機(jī)會(huì)均等,因此這些基本事件的出現(xiàn)是等可能的,
記事件D:“抽取的這2件商品來自相同地區(qū)”,
則事件D包含的基本事件有:
共4個(gè).
所有,即這2件商品來自相同地區(qū)的概率為.
考點(diǎn):分層抽樣,古典概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

由散點(diǎn)圖可知,銷售量與價(jià)格之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是;
(1)求的值;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從線性回歸直線方程中的關(guān)系,且該產(chǎn)品的成本是每件4元,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入一成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校在高二年級(jí)開設(shè)了,三個(gè)興趣小組,為了對(duì)興趣小組活動(dòng)的開展情況進(jìn)行調(diào)查,用分層抽樣方法從,,三個(gè)興趣小組的人員中,抽取若干人組成調(diào)查小組,有關(guān)數(shù)據(jù)見下表(單位:人)

興趣小組
 
小組人數(shù)
 
抽取人數(shù)
 

 
12
 

 

 
36
 
3
 

 
48
 

 
(1)求的值;
(2)若從,兩個(gè)興趣小組所抽取的人中選2人作專題發(fā)言,求這2人都來自興趣小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我市某高中的一個(gè)綜合實(shí)踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日   期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
晝夜溫差(°C)
10
11
13
12
8
6
就診人數(shù)(個(gè))
22
25
29
26
16
12
 
該綜合實(shí)踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù): ;
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校共有教職工900人,分成三個(gè)批次進(jìn)行繼續(xù)教育培訓(xùn),在三個(gè)批次中男、女教職工人數(shù)如下表所示.已知在全體教職工中隨機(jī)抽取1名,抽到第二批次中女教職工的概率是0.16.

 
第一批次
第二批次
第三批次
女教職工
196
x
y
男教職工
204
156
z
 
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓(xùn)效果的調(diào)查,問應(yīng)在第三批次中抽取教職工多少名?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖所示:

將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另一天的日銷售量低于50個(gè)的概率;
(2)用X表示在未來3天里日銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

電視傳媒為了解某市100萬觀眾對(duì)足球節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾每周平均收看足球節(jié)目時(shí)間的頻率分布直方圖,將每周平均收看足球節(jié)目時(shí)間不低于1.5小時(shí)的觀眾稱為“足球迷”,并將其中每周平均收看足球節(jié)目時(shí)間不低于2.5小時(shí)的觀眾稱為“鐵桿足球迷”.
(1)試估算該市“足球迷”的人數(shù),并指出其中“鐵桿足球迷”約為多少人;
(2)該市要舉辦一場(chǎng)足球比賽,已知該市的足球場(chǎng)可容納10萬名觀眾.根據(jù)調(diào)查,如果票價(jià)定為100元/張,則非“足球迷”均不會(huì)到現(xiàn)場(chǎng)觀看,而“足球迷”均愿意前往現(xiàn)場(chǎng)觀看.如果票價(jià)提高元/張,則“足球迷”中非“鐵桿足球迷”愿意前往觀看的人數(shù)會(huì)減少,“鐵桿足球迷”愿意前往觀看的人數(shù)會(huì)減少.問票價(jià)至少定為多少元/張時(shí),才能使前往現(xiàn)場(chǎng)觀看足球比賽的人數(shù)不超過10萬人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校為調(diào)查高一新生上學(xué)路程所需要的時(shí)間(單位:分鐘),從高一年級(jí)新生中隨機(jī)抽取100名新生按上學(xué)所需時(shí)間分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)根據(jù)圖中數(shù)據(jù)求的值
(2)若從第3,4,5組中用分層抽樣的方法抽取6名新生參與交通安全問卷調(diào)查,應(yīng)從第3,4,5組
各抽取多少名新生?
(3)在(2)的條件下,該校決定從這6名新生中隨機(jī)抽取2名新生參加交通安全宣傳活動(dòng),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案