【題目】已知圓C的圓心在x軸上,點(diǎn) 在圓C上,圓心到直線2x﹣y=0的距離為 ,則圓C的方程為( )
A.(x﹣2)2+y2=3
B.(x+2)2+y2=9
C.(x±2)2+y2=3
D.(x±2)2+y2=9
【答案】D
【解析】解:設(shè)圓C的圓心(a,0)在x軸正半軸上,則圓的方程為(x﹣a)2+y2=r2(a>0),
由點(diǎn)M(0, )在圓上,且圓心到直線2x﹣y=0的距離為 ,
得 ,解得a=2,r=3.
∴圓C的方程為:(x﹣2)2+y2=9.
同理設(shè)圓C的圓心(a,0)在x軸負(fù)半軸上,則圓的方程為(x+a)2+y2=r2(a<0),
∴圓C的方程為:(x+2)2+y2=9.
綜上,圓C的方程為:(x±2)2+y2=9.
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握?qǐng)A的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B分別是橢圓 的長(zhǎng)軸的左右端點(diǎn),點(diǎn)F為橢圓的右焦點(diǎn),直線PF的方程為: 且PA⊥PF.
(1)求直線AP的方程;
(2)設(shè)點(diǎn)M是橢圓長(zhǎng)軸AB上一點(diǎn),點(diǎn)M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=2cos(x﹣ )的圖象上所有的點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的圖象( )
A.關(guān)于點(diǎn)(﹣ ,0)對(duì)稱(chēng)
B.關(guān)于點(diǎn)( ,0)對(duì)稱(chēng)
C.關(guān)于直線x=﹣ 對(duì)稱(chēng)
D.關(guān)于直線x= 對(duì)稱(chēng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABP7P5的邊長(zhǎng)為2,P1 , P4 , P6 , P2是四邊的中點(diǎn),AB是正方形的其中一條邊,P1P6與P2P4相交于點(diǎn)P3 , 則 (i=1,2,…,7)的不同值的個(gè)數(shù)為( )
A.7
B.5
C.3
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)檎麛?shù)集的函數(shù)f(x)= ,f1(x)=f(x),fn(x)=f[fn﹣1(x)].若fn(21)=1,則n=;若f4(x)=1,則x所有的值構(gòu)成的集合為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列所給4個(gè)圖像中,與所給3件事吻合最好的順序?yàn)椋?)
(1.)小明離開(kāi)家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
(2.)小明騎著車(chē)一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;
(3.)小明出發(fā)后,心情輕松,緩緩行進(jìn),后來(lái)為了趕時(shí)間開(kāi)始加速.
A.(4)(1)(2)
B.(4)(2)(3)
C.(4)(1)(3)
D.(1)(2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一同學(xué)在電腦中打出如下若干個(gè)圓:○●○○●○○○●○○○○●○○○○○●…,若依此規(guī)律繼續(xù)下去,得到一系列的圓,則在前2012個(gè)圓中共有●的個(gè)數(shù)是( )
A.61
B.62
C.63
D.64
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且 ⊥ .
(1)求角A的大;
(2)若a=3,求△ABC周長(zhǎng)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com