【題目】函數(shù)

(1)討論函數(shù)在區(qū)間上的極值點(diǎn)的個(gè)數(shù);

(2)已知對(duì)任意的恒成立,求實(shí)數(shù)k的最大值.

【答案】(1)見(jiàn)解析;(2)-1

【解析】

(1)由題意,求得函數(shù)的導(dǎo)數(shù),分類討論,得出函數(shù)的單調(diào)性,進(jìn)而可求得函數(shù)的極值點(diǎn)的個(gè)數(shù);

(2)設(shè),先征得當(dāng)時(shí)是成立的,再對(duì)時(shí),總存在,作出證明,進(jìn)而得到實(shí)數(shù)的最大值。

(1)

①當(dāng)時(shí),

,,

單調(diào)遞增,在上無(wú)極值點(diǎn)

②當(dāng)時(shí)

上單調(diào)遞減,,

存在使得,則的極大值點(diǎn);

上單調(diào)遞增,,

存在使得,則的極小值點(diǎn);

上存在兩個(gè)極值點(diǎn)

③當(dāng)時(shí)

上單調(diào)遞增,

存在使得,則的極小值點(diǎn);

上單調(diào)遞減,,

存在使得,則的極大值點(diǎn);

上存在兩個(gè)極值點(diǎn)

綜上所述:當(dāng)時(shí),上無(wú)極值點(diǎn);當(dāng)時(shí),上有兩個(gè)極值點(diǎn)。

(2)設(shè)

①先證明時(shí)成立,證明過(guò)程如下:

,

,,

上單調(diào)遞增,

上單調(diào)遞增,

即對(duì)任意的恒成立

②下證對(duì),總存在 ,

,

當(dāng)時(shí),

(i)當(dāng)時(shí),

(ii)當(dāng)時(shí),,

綜(i)(ii)可知,當(dāng)時(shí),

上單調(diào)遞增

使得

時(shí)

上單調(diào)遞減

時(shí)

即存在,綜上所述,的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)已知,當(dāng),試比較的大小,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明口袋中有3張10元,3張20元(因紙幣有編號(hào)認(rèn)定每張紙幣不同),現(xiàn)從中掏出紙幣超過(guò)45元的方法有_______種;若小明每次掏出紙幣的概率是等可能的,不放回地掏出4張,剛好是50元的概率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩人進(jìn)行定點(diǎn)投籃活動(dòng),已知他們每投籃一次投中的概率分別是,每次投籃相互獨(dú)立互不影響.

(Ⅰ)甲乙各投籃一次,記至少有一人投中為事件A,求事件A發(fā)生的概率;

(Ⅱ)甲乙各投籃一次,記兩人投中次數(shù)的和為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望;

(Ⅲ)甲投籃5次,投中次數(shù)為ξ,求ξ2的概率和隨機(jī)變量ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直四棱柱的底面是菱形,,,EM,N分別是,的中點(diǎn).

1)證明:平面;

2)求點(diǎn)C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2011年,國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為“國(guó)際數(shù)學(xué)節(jié)”,其來(lái)源是中國(guó)古代數(shù)學(xué)家祖沖之的圓周率,為慶祝該節(jié)日,某校舉辦的“數(shù)學(xué)嘉年華”活動(dòng)中,設(shè)計(jì)了如下的有獎(jiǎng)闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,則分別獲得5個(gè)、10個(gè)、20個(gè)學(xué)豆的獎(jiǎng)勵(lì).游戲還規(guī)定:當(dāng)選手闖過(guò)一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒(méi)有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲能闖過(guò)第一關(guān)、第二關(guān)、第三關(guān)的概率分別為,選手選擇繼續(xù)闖關(guān)的概率均為,且各關(guān)之間闖關(guān)成功與否互不影響.

(1)求選手甲第一關(guān)闖關(guān)成功且所得學(xué)豆為零的概率;

(2)設(shè)該選手所得學(xué)豆總數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

男性市民

女性市民

合計(jì)

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問(wèn)題:

(i)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在 △ABC 中,設(shè) a,b,c 分別是角 A,B,C 的對(duì)邊,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且

(1) 求角 C 的大小

(2) 若 c = 3, 求 △ABC 的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列項(xiàng)和為,且.

(1)證明數(shù)列是等比數(shù)列;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案