△ABC的角A,B,C的對(duì)邊分別為a,b,c,已知asinA+bsinB-csinC=asinB.
(Ⅰ)求角C;
(Ⅱ)若a+b=5,S△ABC=
3
2
3
,求c的值.
分析:(Ⅰ)利用正弦定理化簡已知等式得到一個(gè)關(guān)系式,再利用余弦定理表示出cosC,將得出的關(guān)系式代入求出cosC的值,即可確定出角C;
(Ⅱ)利用三角形面積公式表示出三角形ABC面積,將sinC與已知面積代入求出ab的值,再利用余弦定理列出關(guān)系式,利用完全平方公式變形,將a+b與ab,以及cosC的值代入即可求出c的值.
解答:解:(Ⅰ)根據(jù)正弦定理
a
sinA
=
b
sinB
=
c
sinC
,原等式可轉(zhuǎn)化為:a2+b2-c2=ab,
∴cosC=
a2+b2-c2
2ab
=
ab
2ab
=
1
2
,
∵C為三角形的內(nèi)角,
∴C=60°;
(Ⅱ)∵S△ABC=
1
2
absinC=
1
2
ab•
3
2
=
3
3
2
,
∴ab=6,
由余弦定理得:c2=a2+b2-2ab•cosC=(a+b)2-3ab=25-18=7,
∴c=
7
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的角A,B,C對(duì)邊分別為a、b、c,且a=1,∠B=45°,S△ABC=2,則b=(  )
A、5
B、25
C、
41
D、5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的角A,B,C所對(duì)的邊a,b,c,且acosC+
12
c=b

(1)求角A的大;
(2)若a=1,求b+c的最大值并判斷這時(shí)三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的角A、B、C,所對(duì)的邊分別是a、b、c,且C=
π
3
,設(shè)向量
m
=(a,b),
n
(sinB,sinA),
p
=(b-2,a-2)

(1)若
m
n
,求B;
(2)若
m
p
,S△ABC=
3
,求邊長c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)銳角三角形ABC的角A,B,C所對(duì)的邊分別為a,b,c,已知a2+b2-c2=ab.
(1)求∠C的度數(shù);  (2)求∠A的取值范圍; (3)求sinA+sinB的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的角A,B,C的對(duì)邊分別為a,b,c,已知b=4,B=
π
3
,C=
π
4
,則c的長度是(  )
A、
6
B、2
3
+2
C、
4
6
3
D、2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案