分析:(1)利用等比數(shù)列的通項公式及對數(shù)的運算性質(zhì)可把a
n化為
lgb1q,同理可化a
n+1為lg
b1q,根據(jù)a
n+1-a
n=d可得d與q的關系式;
(2)由a
1b
1+a
2b
2+…+a
nb
n=n2
n+3,①得a
1b
1+a
2b
2+…+a
nb
n+a
n+1b
n+1=(n+1)2
n+4,②兩式相減得a
n+1b
n+1=(n+2)2
n+3,把a
n+1=8+nd代入上式可表示出b
n+1,根據(jù)
為常數(shù)可得等式,解出即可;
解答:解:(1)a
n=
=
=
=
=
lgb1q,
an+1==
=
=lg
b1q,
∴a
n+1-a
n=lg
b1q-
lgb1q=lg
=lg
q=d,
∴10
2d=q;
(2)由a
1b
1+a
2b
2+…+a
nb
n=n2
n+3,①
得a
1b
1+a
2b
2+…+a
nb
n+a
n+1b
n+1=(n+1)2
n+4,②
②-①得a
n+1b
n+1=(n+2)2
n+3,
∵a
n+1=8+nd,∴
bn+1=,
則
=(n+3)•2n+4(8+nd) |
(n+2)•2n+3[8+(n+1)d] |
=
2(n+3)(8+nd) |
(n+2)[8+(n+1)d] |
=
2dn2+(6d+16)n+48 |
dn2+(3d+8)n+2d+16 |
,
∵{b
n}為等比數(shù)列,∴上述比式為常數(shù),
則2d:d=(6d+16):(3d+8)=48:(2d+16),
解得d=4,則q=2,
故a
n=8+(n-1)×4=4n+4,
由
a1b1=24,得b
1=2,∴
bn=2•2n-1=2n.
點評:本題考查等差數(shù)列、等比數(shù)列的定義及其通項公式,運算量較大,對能力要求較高.