【題目】已知函數(shù){an}:a1=t,n2Sn+1=n2(Sn+an)+an2 , n=1,2,….
(1)設(shè){an}為等差數(shù)列,且前兩項(xiàng)和S2=3,求t的值;
(2)若t= ,證明: ≤an<1.
【答案】
(1)解:設(shè)等差數(shù)列公差為d,則2t+d=3,
又 ,
得a1=1或a1=﹣3,
但當(dāng)a1=﹣3時(shí),d=9,無(wú)法使 恒成立,
∴t=1.
(2)解:先證an<1.
易知an>0, ,故{an}為遞增數(shù)列,
從而 ,
∴ 有 ,
由疊加法有 (n≥2),
注意到 (k≥2),
∴ , =
從而 ,即an<1(n≥2),
又 ,有an<1(n∈N*)成立.
再證 ,
當(dāng)n=1時(shí), 成立,
由an<1, ,
從而 =
∴ ,即有 ,
疊加有 (n≥2),
又 ,
從而 =
∴ ,即有 (n≥2),
綜上 (n∈N*).
【解析】(1)利用等差數(shù)列的通項(xiàng)公式即可得出;(2)先證an<1.易知an>0,且{an}為遞增數(shù)列,利用遞推關(guān)系可得: ,利用“累加求和”方法即可證明.再證 ,當(dāng)n=1時(shí), 成立,由an<1,可得: ,利用“累加求和”方法即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:或),還要掌握數(shù)列的通項(xiàng)公式(如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分14分)已知遞增等差數(shù)列中的是函數(shù)的兩個(gè)零點(diǎn).?dāng)?shù)列滿足,點(diǎn)在直線上,其中是數(shù)列的前項(xiàng)和.
(1)求數(shù)列和的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
(1)求圓的方程;
(2)設(shè)直線與圓相交于、兩點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過(guò)點(diǎn)?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本著健康、低碳的生活理念,租自行車(chē)騎游的人越來(lái)越多.某自行車(chē)租車(chē)點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車(chē)每次租時(shí)間不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人獨(dú)立來(lái)該租車(chē)點(diǎn)騎游(各組一車(chē)一次).設(shè)甲、乙不超過(guò)兩小時(shí)還車(chē)的概率分別為, ;兩小時(shí)以上且不超過(guò)三小時(shí)還車(chē)的概率分別為, ;兩人租車(chē)時(shí)間都不會(huì)超過(guò)四小時(shí).
(1)求甲、乙兩人所付租車(chē)費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車(chē)費(fèi)用之和為隨機(jī)變量,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角三角形ABC中角A,B,C對(duì)邊長(zhǎng)分別為a,b,c,∠C=90°.
(1)若三角形面積為2,求斜邊長(zhǎng)c最小值;
(2)試比較an+bn與cn(n∈N*)的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績(jī)的平均分是85,乙班學(xué)生成績(jī)的中位數(shù)是89.
(1)求和的值;
(2)計(jì)算乙班7位學(xué)生成績(jī)的方差.
(3)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求乙班至少有一名學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,,是的中點(diǎn),是等腰三角形,為的中點(diǎn),為上一點(diǎn).
(I)若平面,求;
(II)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A= ,b2﹣a2= c2 .
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,設(shè).
(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;
(2)在中,分別為內(nèi)角的對(duì)邊,且,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com