【題目】已知,設.

1)若圖象中相鄰兩條對稱軸間的距離不小于,求的取值范圍;

2)若的最小正周期為,且當時,的最大值是,求的解析式,并說明如何由的圖象變換得到的圖象.

【答案】1;(2;平移變換過程見解析.

【解析】

1)根據(jù)平面向量的坐標運算,表示出的解析式,結合輔助角公式化簡三角函數(shù)式.結合相鄰兩條對稱軸間的距離不小于及周期公式,即可求得的取值范圍;

2)根據(jù)最小正周期,求得的值.代入解析式,結合正弦函數(shù)的圖象、性質與的最大值是,即可求得的解析式.再根據(jù)三角函數(shù)圖象平移變換,即可描述變換過程.

1)由題意可知,

,

2)∵,

,

∴當

圖象上所有點向右平移個單位,得到的圖象;再將得到的圖象上所有點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變,得到的圖象(或將圖象上所有點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變,得到的圖象;再將得到的圖象上所有點向右平移個單位,得到的圖象)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了了解人們對延遲退休年齡政策的態(tài)度,某部門從網(wǎng)年齡在15~65歲的人群中隨機調查100人,調查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計結果如下:

(I)由頻率分布直方圖估計年齡的眾數(shù)和平均數(shù);

(II)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷是否有95%的把握認為以45歲為分界點的不同人群對延遲退休年齡政策的支持度有差異;

參考數(shù)據(jù):

(III)若以45歲為分界點,從不支持延遲退休的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2.求抽到的2人中1人是45歲以下,另一人是45歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中x>0,k為常數(shù),e為自然對數(shù)的底數(shù).

(1)當k≤0時,求的單調區(qū)間;

(2)若函數(shù)在區(qū)間(1,3)上存在兩個極值點,求實數(shù)k的取值范圍;

(3)證明:對任意給定的實數(shù)k,存在(),使得在區(qū)間(,)上單調遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題:方程表示焦點在軸上的雙曲線:命題:若存在,使得成立.

1)如果命題是真命題,求實數(shù)的取值范圍;

2)如果為假命題,為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,,則下面結論正確的是( )

A. 上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

B. 上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

C. 上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

D. 上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,是函數(shù)的圖象上任意兩點,若,的中點,且的橫坐標為

1)求;

2)若,求;

3)已知數(shù)列的通項公式,),數(shù)列的前項和為,若不等式對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在實數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當x1時,f(x)=2x﹣1,則f(),f(),f()的大小關系是( 。

A. f()<f()<f( B. f()<f()<f(

C. f()<f()<f( D. f()<f()<f(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,E、FG、H分別是棱、的中點.

1)判斷直線的位置關系,并說明理由;

2)求異面直線所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:①方程表示的圖形是一個點;②命題,則為真命題;③已知雙曲線的左右焦點分別為,,過右焦點被雙曲線截得的弦長為4的直線有3;④已知橢圓上有兩點,,若點是橢圓上任意一點,且,直線的斜率分別為,,則為定值.

其中說法正確的序號是________.

查看答案和解析>>

同步練習冊答案