【題目】已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)解關(guān)于t的不等式f(t2-2t)+f(2t2-1)<0.
【答案】(1)2;(2)
【解析】
(1)根據(jù)奇函數(shù)性質(zhì)的f(0)=0解得b,再根據(jù)f(1)=-f(-1)解得a,(2)先判斷函數(shù)f(x)單調(diào)性,再根據(jù)奇函數(shù)性質(zhì)以及單調(diào)性化簡(jiǎn)不等式為t2-2t>-2t2+1,解一元二次不等式得結(jié)果.
(1)因?yàn)閒(x)是定義在R上的奇函數(shù),
所以f(0)=0,
即=0,解得b=1,
所以f(x)=.
又由f(1)=-f(-1)知=-,解得a=2.
(2)由(1)知f(x)==-+.
由上式易知f(x)在(-∞,+∞)上為減函數(shù)(此處可用定義或?qū)?shù)法證明函數(shù)f(x)在R上是減函數(shù)).
又因?yàn)閒(x)是奇函數(shù),所以不等式f(t2-2t)+f(2t2-1)<0等價(jià)于f(t2-2t)<-f(2t2-1)=f(-2t2+1).
因?yàn)閒(x)是減函數(shù),由上式推得t2-2t>-2t2+1,
即3t2-2t-1>0,解不等式可得t>1或t<-,
故原不等式的解集為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明一家訂閱的晚報(bào)會(huì)在下午5:30~6:30之間的任何一個(gè)時(shí)間隨機(jī)地被送到,小明一家人在下午6:00~7:00之間的任何一個(gè)時(shí)間隨機(jī)地開(kāi)始晚餐.
(1)你認(rèn)為晚報(bào)在晚餐開(kāi)始之前被送到和晚餐開(kāi)始之后被送到哪一種可能性更大?
(2)晚報(bào)在晚餐開(kāi)始之前被送到的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S2=11,S5=50,則過(guò)點(diǎn)P(n,an)和Q(n+2,an+2)(n∈N*)的直線的一個(gè)方向向量的坐標(biāo)可以是( )
A.(﹣1,﹣3)
B.(1,﹣3)
C.(1,1)
D.(1,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的對(duì)角線與相交于點(diǎn),將沿對(duì)角線折起,使得平面平面(如圖),則下列命題中正確的是( )
A. 直線直線,且直線直線
B. 直線平面,且直線平面
C. 平面平面,且平面平面
D. 平面平面,且平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)對(duì)(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱集合M具有∟性,給出下列四個(gè)集合:
①M(fèi)={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 的圖象上關(guān)于y軸對(duì)稱的點(diǎn)至少有3對(duì),則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com