在△ABC中,內(nèi)角A、B、C的對邊長分別a、b、c,已知a2-c2=2b,且sinAcosC=3cosAsinC,則b=( 。
A、4
B、4
2
C、2
3
D、3
3
考點:正弦定理,余弦定理
專題:解三角形
分析:首先利用正弦和余弦定理轉(zhuǎn)化出2(a2-c2)=b2,結(jié)合a2-c2=2b,直接算出結(jié)果.
解答: 解:sinAcosC=3cosAsinC,
利用正、余弦定理得到:
a
a2+b2-c2
2ab
=3c
b2+c2-a2
2bc

解得:2(a2-c2)=b2
由于:a2-c2=2b②
由①②得:b=4
故選:A
點評:本題考查的知識要點:正、余弦定理的應(yīng)用及相關(guān)的運算問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
y≥x
x+2y≤2
x≥-2
,則z=x-3y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2
1+ax
x-1
(a為常數(shù))是奇函數(shù).
(Ⅰ)求a的值與函數(shù) f(x)的定義域;
(Ⅱ)若當(dāng)x∈(1,+∞) 時,f(x)+log2(x-1)>m恒成立.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三邊BC、AC、AB的 長分別為a、b、c,若a=4,E為邊BC的中點.
(1)若
AB
AC
=1,求BC邊上的中線AE的長;
(2)若△ABC面積為3
2
,求
AB
AC
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3x+1
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)滿足f(-x)=-f(x),且f(1-a)+f(1-2a)<0.若f(x)是(-1,1)上的減函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(2x+1)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A、y=ln(x+2)
B、y=-
x+1
C、y=(
1
2
x
D、y=|x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是(  )
A、-1
B、1
C、2
D、
1
2

查看答案和解析>>

同步練習(xí)冊答案