如圖,直線l1與l2是同一平面內(nèi)兩條互相垂直的直線,交點(diǎn)是A,點(diǎn)B、D在直線l1上(B、D 位于點(diǎn)A右側(cè)),且|AB|=4,|AD|=1,M是該平面上的一個(gè)動(dòng)點(diǎn),M在l1上的射影點(diǎn)是N,且|BN|=2|DM|.w.w.w.k.s.5.u.c.o.m
(Ⅰ) 建立適當(dāng)?shù)淖鴺?biāo)系,求動(dòng)點(diǎn)M的軌跡C的方程.
(Ⅱ)過點(diǎn)D且不與l1、l2垂直的直線l交(Ⅰ)中的軌跡C于E、F兩點(diǎn);另外平面上的點(diǎn)G、H滿足:①②③求點(diǎn)G的橫坐標(biāo)的取值范圍.
(Ⅰ) 以A點(diǎn)為坐標(biāo)原點(diǎn),l1為x軸,建立如圖所示的坐標(biāo)系,則D(1,0),B(4,0),動(dòng)點(diǎn)M的軌跡方程為.
(Ⅱ點(diǎn)G的橫坐標(biāo)的取值范圍為(0,).
(Ⅰ) 以A點(diǎn)為坐標(biāo)原點(diǎn),l1為x軸,建立如圖所示的坐標(biāo)系,則D(1,0),B(4,0),設(shè)M(x,y),
則N(x,0).
∵|BN|=2|DM|, ∴|4-x|=2,
整理得3x2+4y2=12, ∴動(dòng)點(diǎn)M的軌跡方程為.
(Ⅱ)∵
∴A、D、G三點(diǎn)共線,即點(diǎn)G在x軸上;又∵∴H點(diǎn)為線段EF的中點(diǎn);又∵∴點(diǎn)G是線段EF的垂直平分線GH與x軸的交點(diǎn)。
設(shè)l:y=k(x-1)(k≠0),代入3x2+4y2=12得
(3+4k2)x2-8k2x+4k2-12=0,由于l過點(diǎn)D(1,0)是橢圓的焦點(diǎn),
∴l(xiāng)與橢圓必有兩個(gè)交點(diǎn),
設(shè)E(x1,y1),F(xiàn)(x2,y2),EF的中點(diǎn)H的坐標(biāo)為(x0,y0),
∴x1+x2=,x1x2= ,
x0= = ,y0=k(x0-1)= ,
∴線段EF的垂直平分線為
y- y0 =- (x-x0),令y=0得,
點(diǎn)G的橫坐標(biāo)xG = ky0+x0 = + =
= -,
∵k≠0,∴k2>0,∴3+4k2>3,0<<,∴-<-<0,
∴xG= -(0,)
∴點(diǎn)G的橫坐標(biāo)的取值范圍為(0,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,直線l1與l2是同一平面內(nèi)兩條互相垂直的直線,交點(diǎn)是A,點(diǎn)B、D在直線l1上(B、D 位于點(diǎn)A右側(cè)),且|AB|=4,|AD|=1,M是該平面上的一個(gè)動(dòng)點(diǎn),M在l1上的射影點(diǎn)是N,且|BN|=2|DM|.
(Ⅰ) 建立適當(dāng)?shù)淖鴺?biāo)系,求動(dòng)點(diǎn)M的軌跡C的方程.
(Ⅱ)過點(diǎn)D且不與l1、l2垂直的直線l交(Ⅰ)中的軌跡C于E、F兩點(diǎn);另外平面上的點(diǎn)G、H滿足:①②③求點(diǎn)G的橫坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com