9、如圖,在四面體ABCD中,截面PQMN是正方形,則在下列命題中,錯(cuò)誤的為(  )
分析:首先由正方形中的線線平行推導(dǎo)線面平行,再利用線面平行推導(dǎo)線線平行,這樣就把AC、BD平移到正方形內(nèi),即可利用平面圖形知識(shí)做出判斷.
解答:解:因?yàn)榻孛鍼QMN是正方形,所以PQ∥MN、QM∥PN,
則PQ∥平面ACD、QM∥平面BDA,
所以PQ∥AC,QM∥BD,
由PQ⊥QM可得AC⊥BD,故A正確;
由PQ∥AC可得AC∥截面PQMN,故B正確;
異面直線PM與BD所成的角等于PM與QM所成的角,故D正確;
綜上C是錯(cuò)誤的.
故選C.
點(diǎn)評(píng):本題主要考查線面平行的性質(zhì)與判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點(diǎn),G,H分別為DE,AF的中點(diǎn),將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點(diǎn),G,H分別為DE,AF的中點(diǎn),將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABCD中,BC⊥面ACD,DA=DC,E、F分別為AB、AC的中點(diǎn).
(1)求證:直線EF∥面BCD;
(2)求證:面DEF⊥面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•武漢模擬)如圖,在四面體A-BCD中,AB=AD=
2
,BD=2,DC=1
,且BD⊥DC,二面角A-BD-C大小為60°.
(1)求證:平面ABC上平面BCD;
(2)求直線CD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四面體ABCD中,DA=DB=DC=1,且DA,DB,DC兩兩互相垂直,點(diǎn)O是△ABC的中心,將△DAO繞直線DO旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,直線DA與BC所成角的余弦值的取值范圍是( 。
A、[0, 
6
3
]
B、[0, 
3
2
]
C、[0, 
2
2
]
D、[0, 
3
3
]

查看答案和解析>>

同步練習(xí)冊(cè)答案