【題目】某市一所醫(yī)院在某時間段為發(fā)燒超過38的病人特設(shè)發(fā)熱門診,該門診記錄了連續(xù)5天晝夜溫差()與就診人數(shù)的資料:

日期

1

2

3

4

5

晝夜溫差()

8

10

13

12

7

就診人數(shù)(人)

18

25

28

27

17

(1)求的相關(guān)系數(shù),并說明晝夜溫差()與就診人數(shù)具有很強的線性相關(guān)關(guān)系.

(2)求就診人數(shù)(人)關(guān)于出晝夜溫差()的線性回歸方程,預(yù)測晝夜溫差為9時的就診人數(shù).

附:樣本的相關(guān)系數(shù)為,當時認為兩個變量有很強的線性相關(guān)關(guān)系.

回歸直線方程為,其中,.

參考數(shù)據(jù):

【答案】1,有很強的線性相關(guān)關(guān)系;(2)可以預(yù)測晝夜溫差為時的就診人數(shù)大約為21人左右.

【解析】

(1)根據(jù)已知數(shù)據(jù),先求出,然后根據(jù)相關(guān)系數(shù)公式求出比較,即可得出結(jié)果;

(2)根據(jù)公式分別求出,即可求出診人數(shù)(人)關(guān)于出晝夜溫差()的線性回歸方程,再將代入,可求出,從而可預(yù)測晝夜溫差為9時的就診人數(shù).

(1),,

,

,晝夜溫差)與就診人數(shù)具有很強的線性相關(guān)關(guān)系.

(2)因為

,

所以,所以

時,

由此可以預(yù)測晝夜溫差為時的就診人數(shù)大約為21人左右.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、PAPBC分別為⊙O的切線和割線,切點ABD的中點,AC、BD相交于點E,ABPE相交于點F,直線CF交⊙O于另一點G、PA于點K.

證明:(1)KPA的中點;(2)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐PABCD中,底面ABCD是直角梯形,AD//BC,BC2ADADCD,PD⊥平面ABCD,EPB的中點.

(1)求證:AE//平面PDC;

(2)BCCDPD,求直線AC與平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.

1)請問小明上學(xué)的路線有多少種不同可能?

2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;

3)請你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計一條最佳的上學(xué)路線,且應(yīng)盡量避開哪條路線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.到直線的距離為3”的充要條件

B.直線的傾斜角的取值范圍為

C.直線與直線平行,且與圓相切

D.離心率為的雙曲線的漸近線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標為

1)求橢圓的方程;

2)點內(nèi)一點,為坐標原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富教職工生活,五一節(jié)舉辦教職工趣味投籃比賽,有兩個定點投籃位置,在點投中一球得2分,在點投中一球得3.規(guī)則是:每人投籃三次按先的順序各投籃一次,教師甲在點投中的概率分別是,且在兩點投中與否相互獨立.

1)若教師甲投籃三次,求教師甲投籃得分的分布列;

2)若教師乙與教師甲在點投中的概率相同,兩人按規(guī)則各投三次,求甲勝乙的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)R上的奇函數(shù),當時,,則函數(shù)上的所有零點之和為(

A.0B.4C.8D.16

查看答案和解析>>

同步練習(xí)冊答案