如圖所示,從一個半徑為1+m的圓形紙板中切割出一塊圖形,該圖形的中間是正方形,四周是以正方形各邊為底邊的四個正三角形,將其折疊成一個正四棱錐P-ABCD,則該正四棱錐的體積是

[  ]
A.

m3

B.

m3

C.

m3

D.

m3

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖為一個觀覽車示意圖,該觀覽車半徑為4.8m,圓上最低點與地面距離為0.8m,60秒轉動一圈,圖中OA與地面垂直,以OA為始邊,逆時針轉動θ角到OB,設B點與地面距離為h.
(1)在如圖所示直角坐標系中,求h與θ間關系的函數(shù)解析式;
(2)設從OA開始轉動,經(jīng)過t秒到達OB,求h與t間關系的函數(shù)解析式;
(3)填寫下列表格:
θ 30° 60° 90° 120° 150° 180°
h(m)
t(s) 0 5 10 15 20 25 30
h(m)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個軸截面.動點M從點B出發(fā)沿著圓柱的側面到達點D,其距離最短時在側面留下的曲線Γ如圖所示.將軸截面ABCD繞著軸OO1逆時針旋轉θ(0<θ<π)后,邊B1C1與曲線Γ相交于點P.
(1)求曲線Γ長度;
(2)當θ=
π
2
時,求點C1到平面APB的距離;
(3)是否存在θ,使得二面角D-AB-P的大小為
π
4
?若存在,求出線段BP的長度;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)有一塊扇形鐵板,半徑為R,圓心角為60°,從這個扇形中切割下一個內接矩形,即矩形的各個頂點都在扇形的半徑或弧上(如圖所示),求這個內接矩形的最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•湖南)在平面直角坐標系xOy中,將從點M出發(fā)沿縱、橫方向到達點N的任一路徑稱為M到N的一條“L路徑”.如圖所示的路徑MM1M2M3N與路徑MN1N都是M到N的“L路徑”.某地有三個新建居民區(qū),分別位于平面xOy內三點A(3,20),B(-10,0),C(14,0)處.現(xiàn)計劃在x軸上方區(qū)域(包含x軸)內的某一點P處修建一個文化中心.
(I)寫出點P到居民區(qū)A的“L路徑”長度最小值的表達式(不要求證明);
(II)若以原點O為圓心,半徑為1的圓的內部是保護區(qū),“L路徑”不能進入保護區(qū),請確定點P的位置,使其到三個居民區(qū)的“L路徑”長度之和最小.

查看答案和解析>>

同步練習冊答案