已知過拋物線x2=4y的對稱軸上一點P(0,m)(m>0)作直線l,l與拋物線交于A、B兩點.
(1)若角∠AOB為銳角(O為坐標原點),求實數(shù)m的取值范圍;
(2)若l的方程為x-2y+12=0,且過A、B兩點的圓C與拋物線在點且(A在第一象限)處有共同的切線,求圓C的方程.
(1)設l:y=kx+m,代入拋物線x2=4y的方程化簡得 x2-4ky-4m=0, 1分 ∵m>O∴△=16k2+16m>0恒成立 設A(x1,y1).B(x2,y2),則xl+x2=4k,x1x2=-4m. 又角AOB為銳角,所以 3分 因為, 則,即, 又因為m>0,解得m>4; 6分 (2)解方程組,得或, 由題意得A(6,9)、B(-4,4), 又函數(shù)的導數(shù)為,所以過點A的公共切線斜率k=3,由題意知圓C的圓心C是線段AB的垂直平分線和過點A與公共切線垂直的直線的交點, 9分 ,即, ,即, 10分 聯(lián)立和的方程解得圓心坐標, 圓半徑 11分 故所求圓方程為 12分 |
科目:高中數(shù)學 來源:廣東省實驗中學2012屆高三下學期綜合測試(一)數(shù)學理科試題 題型:044
已知過點A(0,4)的直線l與以F為焦點的拋物線C:x2=py相切于點T(-4,y0);中心在坐標原點,一個焦點為F的橢圓與直線l有公共點.
(1)求直線l的方程和焦點F的坐標;
(2)求當橢圓的離心率最大時橢圓的方程;
(3)設點M(x1,yl)是拋物線C上任意一點,D(0,-2)為定點,是否存在垂直于y軸的直線l/被以MD為直徑的圓截得的弦長為定值?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省寧波市鄞州區(qū)2012屆高三5月高考適應性考試數(shù)學理科試題 題型:044
已知圓C:x2+(y-2)2=4,M(x0,y0)為拋物線x2=4y上的動點.
(Ⅰ)若x0=4,求過點M的圓的切線方程;
(Ⅱ)若x0>4,求過點M的圓的兩切線與x軸圍成的三角形面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知P,Q為拋物線x2=2y上兩點,點P,Q的橫坐標分別為4,-2,過P,Q分別作拋物線的切線,兩切線交于點A,則點A的縱坐標為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com