精英家教網 > 高中數學 > 題目詳情

函數f(x),g(x)在(m,n)上的導數分別為f'(x),g′(x),且f′(x)<g′(x),則當m<x<n時,有


  1. A.
    f(x)>g(x)
  2. B.
    f(x)<g(x)
  3. C.
    f(x)+g(n)<g(x)+f(n)
  4. D.
    f(x)+g(m)<g(x)+f(m)
D
分析:構造函數h(x)=f(x)-g(x),則h′(x)=f′(x)-g′(x),根據f′(x)<g′(x),可得h(x)為減函數,因為m<x<n,所以h(m)>h(x)>h(n),從而可得結論.
解答:構造函數h(x)=f(x)-g(x),則h′(x)=f′(x)-g′(x)
∵f′(x)<g′(x),
∴h′(x)<0
∴h(x)為減函數
∵m<x<n
∴h(m)>h(x)>h(n)
∴f(m)-g(m)>f(x)-g(x)>f(n)-g(n)
∴f(x)+g(m)<g(x)+f(m),f(x)+g(n)>g(x)+f(n)
故選D.
點評:本題考查函數的單調性,考查構造函數,解題的關鍵是構造函數,確定函數的單調性.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在區(qū)間[m,n]上的兩個函數f(x)和g(x),如果對任意的x∈[m,n],均有不等式|f(x)-g(x)|≤1成立,則稱函數f(x)與g(x)在[m,n]上是“友好”的,否則稱“不友好”的.現(xiàn)在有兩個函數f(x)=loga(x-3a)與g(x)=loga
1x-a
(a>0,a≠1),給定區(qū)間[a+2,a+3].
(1)若f(x)與g(x)在區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;
(2)討論函數f(x)與g(x)在區(qū)間[a+2,a+3]上是否“友好”.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于函數f(x),g(x),h(x),如果存在實數a,b,使得h(x)=af(x)+bg(x),那么稱h(x)為f(x),g(x)的線性生成函數.
(1)給出如下兩組函數,試判斷h(x)是否分別為f(x),g(x)的線性生成函數,并說明理由.
第一組:數學公式;
第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數t的取值范圍;
(3)已知數學公式的線性生成函數h(x),其中a>0,b>0.若h(x)≥b對a∈[1,2]恒成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省蘇州中學高三(上)調研數學試卷(解析版) 題型:解答題

對于函數f(x),g(x),h(x),如果存在實數a,b,使得h(x)=af(x)+bg(x),那么稱h(x)為f(x),g(x)的線性生成函數.
(1)給出如下兩組函數,試判斷h(x)是否分別為f(x),g(x)的線性生成函數,并說明理由.
第一組:
第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數t的取值范圍;
(3)已知的線性生成函數h(x),其中a>0,b>0.若h(x)≥b對a∈[1,2]恒成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案