設(shè)直線x+ky-1=0被圓O:x2+y2=2所截弦的中點(diǎn)的軌跡為M,則曲線M與直線x-y-1=0位置關(guān)系為( 。
A.相離B.相切C.相交D.不確定
如圖,直線x+ky-1=0恒過定點(diǎn)A(1,0),
由平面幾何知識(shí)得,OM⊥AM,
從而中點(diǎn)M的軌跡是以O(shè)A為直徑的圓,
其方程為:(x-
1
2
2+y2=
1
4

由圓的方程得到圓心坐標(biāo)(
1
2
,0),半徑r=
1
2

則圓心(
1
2
,0)到直線x-y-1=0的距離d=
1
2
5
<r=
1
2
,
所以直線與圓的位置關(guān)系是相交.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C1x2+y2-4x-2y-5=0,圓C2x2+y2+2x-2y-14=0
(1)試判斷兩圓的位置關(guān)系;
(2)直線ι過點(diǎn)(6,3)與圓C1相交于A,B兩點(diǎn),且|AB|=2
6
,求直線ι的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

判斷每個(gè)圖下面的方程哪個(gè)是圖中曲線的方程( 。
A.
x2+y2=1
B.
x2-y2=0
C.
y=|x|
D.
lgx+lgy=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線x2+y2-2ax+2(a-2)y+2=0,(其中a∈R),當(dāng)a=1時(shí),曲線表示的軌跡是______.當(dāng)a∈R,且a≠1時(shí),上述曲線系恒過定點(diǎn)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于-
1
3
.求動(dòng)點(diǎn)P的軌跡方程.
(2)
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為2,原點(diǎn)到直線AB的距離為
3
2
,其中A(0,-b)、B(a,0)求該雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程(x+y-1)
x-y-3
=0
表示的曲線是( 。
A.兩條互相垂直的直線B.兩條射線
C.一條直線和一條射線D.一個(gè)點(diǎn)(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三點(diǎn)A(0,4)、B(0,-4)、C(7,-3),△ABC外接圓為圓M(圓心M).
(1)求圓M的方程;
(2)若N(-7,0),R在圓M上運(yùn)動(dòng),平面上一動(dòng)點(diǎn)P滿足
RP
=4
PN
,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

到空間兩點(diǎn)A(-1,1,0),B(2,-1,-1)等距離的點(diǎn)的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面斜坐標(biāo)系xoy中∠xoy=45°,點(diǎn)P的斜坐標(biāo)定義為:“若
OP
=x0
e1
+y0
e2
(其中,
e1
,
e2
分別為與斜坐標(biāo)系的x軸,y軸同方向的單位向量),則點(diǎn)P的坐標(biāo)為(x0,y0)”.若F1(-1,0),F(xiàn)2(1,0)且動(dòng)點(diǎn)M(x,y)滿足|
MF1
|=|
MF2
|,則點(diǎn)M在斜坐標(biāo)系中的軌跡方程為( 。
A.x=0B.y=0C.
2
x+y=0
D.
2
x-y=0

查看答案和解析>>

同步練習(xí)冊(cè)答案