考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的極值,導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用
專題:計(jì)算題,分類討論,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出導(dǎo)數(shù),令導(dǎo)數(shù)為0,再由f(x)在(0,2)上無極值,即可求得t;
(Ⅱ)對(duì)t討論,分①當(dāng)0<t<1時(shí),②當(dāng)t=1時(shí),③當(dāng)1<t<2時(shí),④當(dāng)t≥2時(shí),求出單調(diào)區(qū)間,極值,進(jìn)而確定最值,解不等式,即可得到t的范圍;
(Ⅲ)運(yùn)用參數(shù)分離,得到m≤xe
x-x
3+
x
2-3tx+1=x(e
x-x
2+
x-3t)+1對(duì)x≥0恒成立.
g(x)=e
x-x
2+
x-3t,x≥0,由于m的最大值為1.則g(x)=e
x-x
2+
x-3t≥0恒成立.
對(duì)g(x)二次求導(dǎo),求出單調(diào)區(qū)間,求出極值和最值,判斷g(x)的單調(diào)性,即可得到t的范圍.
解答:
解:(Ⅰ)f′(x)=3x
2-3(t+1)x+3t=3(x-1)(x-t),
令f′(x)=0,則x=1或t,
又f(x)在(0,2)無極值,由于1∈(0,2),則t=1;
(Ⅱ)①當(dāng)0<t<1時(shí),f(x)在(0,t)單調(diào)遞增,在(t,1)單調(diào)遞減,在(1,2)單調(diào)遞增,
∴f(t)≥f(2),由f(t)≥f(2)得:-t
3+3t
2≥4在0<t<1時(shí)無解.
②當(dāng)t=1時(shí),不合題意;
③當(dāng)1<t<2時(shí),f(x)在(0,1)單調(diào)遞增,在(1,t)單調(diào)遞減,在(t,2)單調(diào)遞增,
∴
即
∴
≤t<2;
④當(dāng)t≥2時(shí),f(x)在(0,1)單調(diào)遞增,在(1,2)單調(diào)遞減,滿足條件.
綜上所述:
t∈[,+∞)時(shí),存在x
0∈(0,2),使得f(x
0)是f(x)在[0,2]上的最大值.
(Ⅲ)若f(x)≤xe
x-m+2(e為自然對(duì)數(shù)的底數(shù))對(duì)任意x∈[0,+∞)恒成立,
即m≤xe
x-x
3+
x
2-3tx+1=x(e
x-x
2+
x-3t)+1對(duì)x≥0恒成立.
令g(x)=e
x-x
2+
x-3t,x≥0,由于m的最大值為1.
則g(x)=e
x-x
2+
x-3t≥0恒成立,否則?x
0>0,g(x
0)<0,
則當(dāng)x=x
0,m=1時(shí),f(x)≤xe
x-m+2不恒成立,
由于g(0)=1-3t≥0,則0<t≤
,
當(dāng)0<t≤
時(shí),g′(x)=e
x-2x+
,則g′′(x)=e
x-2;
若g′′(x)=0,則x=ln2,則g′(x)在(0,ln2)上遞減,
在(ln2,+∞)上遞增,則g′(x)
min=g′(ln2)=2+
-ln2>0,
則g(x)在x≥0上遞增,則g(x)≥g(0)=1-3t≥0,滿足條件,
故t的取值范圍是(0,
].
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和求極值、最值,考查分類討論的思想方法,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.