【題目】設(shè)m,n∈R,定義在區(qū)間[m,n]上的函數(shù)f(x)=log2(4﹣|x|)的值域是[0,2],若關(guān)于t的方程( |t|+m+1=0(t∈R)有實(shí)數(shù)解,則m+n的取值范圍是

【答案】[1,2)
【解析】解:∵函數(shù)f(x)=log2(4﹣|x|)的值域是[0,2],

∴1≤4﹣|x|≤4,

∴0≤|x|≤3,

∴m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;

又∵關(guān)于t的方程( |t|+m+1=0(t∈R)有實(shí)數(shù)解,

∴m=﹣(( |t|+1),

∵1<( |t|+m+1≤2,

∴﹣2≤m<﹣1,

則n=3,

則1≤m+n<2,

即答案為:[1,2).

【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的),還要掌握函數(shù)的零點(diǎn)(函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正有理數(shù)a1 的一個(gè)近似值,令a2=1+ ,求證:
(1) 介于a1與a2之間;
(2)a2比a1更接近于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式的解集是
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四圖,都是同一坐標(biāo)系中三次函數(shù)及其導(dǎo)函數(shù)的圖象,其中一定正確的序號(hào)是(
A.①②
B.①③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x(|x|+4),且f(a2)+f(a)<0,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F1 , F2分別為橢圓 +y2=1的焦點(diǎn),點(diǎn)A,B在橢圓上,若 =5 ;則點(diǎn)A的坐標(biāo)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上的動(dòng)點(diǎn)P(x,y)及兩定點(diǎn)A(﹣2,0),B(2,0),直線PA,PB的斜率分別是 k1 , k2
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+m與曲線C交于不同的兩點(diǎn)M,N. ①若OM⊥ON(O為坐標(biāo)原點(diǎn)),證明點(diǎn)O到直線l的距離為定值,并求出這個(gè)定值
②若直線BM,BN的斜率都存在并滿足 ,證明直線l過(guò)定點(diǎn),并求出這個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知圓C1的參數(shù)方程為 (φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=2 cos(θ﹣ ). (Ⅰ)將圓C1的參數(shù)方程他為普通方程,將圓C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓C1 , C2是否相交,若相交,請(qǐng)求出公共弦的長(zhǎng);若不相交,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n,s,t∈R+ , m+n=2, ,其中m、n是常數(shù),當(dāng)s+t取最小值 時(shí),m、n對(duì)應(yīng)的點(diǎn)(m,n)是雙曲線 一條弦的中點(diǎn),則此弦所在的直線方程為

查看答案和解析>>

同步練習(xí)冊(cè)答案