17.集合A={lg2,lg5},B={a,b},若A=B,則$\frac{{a}^{2}+^{2}-1}{{a}^{3}+^{3}-1}$的值為$\frac{2}{3}$.

分析 根據(jù)集合的相等求出a+b=1,代入代數(shù)式$\frac{{a}^{2}+^{2}-1}{{a}^{3}+^{3}-1}$,從而求出代數(shù)式的值.

解答 解:集合A={lg2,lg5},B={a,b},
若A=B,則a+b=lg2+lg5=lg10=1,
$\frac{{a}^{2}+^{2}-1}{{a}^{3}+^{3}-1}$=$\frac{{(a+b)}^{2}-2ab-1}{(a+b){[(a+b)}^{2}-3ab]-1}$=$\frac{1-2ab-1}{1-3ab-1}$=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.

點評 本題考查了相等集合的定義,考查對數(shù)的運算性質(zhì),考查代數(shù)式的變形,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖1,矩形APCD中,AD=2AP,B為PC的中點,將△APB折沿AB折起,使得PD=PC,如圖2.
(1)若E為PD中點,證明:CE∥平面APB;
(2)證明:平面APB⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{-{2}^{x}+b}{{2}^{x+1}+a}$在實數(shù)集R上定義,a,b是方程${5}^{{x}^{2}-3x+1}=\frac{1}{5}$的實根,且a>b.
(1)求a,b的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)證明函數(shù)f(x)在R上是減函數(shù);
(4)若對任意的實數(shù)t,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的首項a1=1,且對每個n∈N*,an,an+1是方程x2+2nx+bn=0的兩根,則b10=189.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)滿足f(x-1)=2x+1,若f(a)=3a,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)={x^2}+\frac{a}{x}$(a∈R).
(1)判斷f(x)的奇偶性;
(2)當(dāng)a=1時,求證:函數(shù)y=f(x)在區(qū)間$({0,\root{3}{{\frac{1}{2}}}})$上是單調(diào)遞減函數(shù),在區(qū)間($\root{3}{\frac{1}{2}}$,+∞)上是單調(diào)遞增函數(shù);
(3)若正實數(shù)x,y,z滿足x+y2=z,x2+y=z2,求z的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知tanθ=$\frac{1}{3}$,那么tan($θ+\frac{π}{4}$)等于( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α,β為銳角,cosα=$\frac{1}{7},sin(α+β)=\frac{{5\sqrt{3}}}{14}$,則cosβ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.各項均為正數(shù)的等比數(shù)列{an},a1=1,a2a4=16,數(shù)列{bn}的前n項和為Sn,且Sn=$\frac{3{n}^{2}+n}{2}(n∈{N}^{+})$.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=an+(-1)nbn,求數(shù)列{cn}的前n項和Un;
(3)令dn=$\frac{_{n}}{{a}_{n}}$(n∈N+),數(shù)列{dn}的前n項和為Tn,若Tn≥t2+t恒成立,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案