(2011•孝感模擬)設p:(
1
2
)
x
,21-x2x2
成等比數(shù)列;q:lgx,lg(x+1),lg(x+3)成等差數(shù)列,則條件p是條件q成立的( 。
分析:求出p為真命題時x的值,求出q為真命題時x的值,判斷出兩個命題對于x的集合的關系,利用充要條件與集合包含關系的關系得到結論.
解答:解:若命題p:(
1
2
)
x
21-x,2x2
成等比數(shù)列為真命題,
(
2
2x
)
2
=(
1
2
)
x
2x2

即 x2+x-2=0
即x∈{1,-2}
若命題q:lgx,lg(x+1),lg(x+3)成等差數(shù)列
2lg(x+1)=lg(x)+lg(x+3)
x>0

(x+1)2=x•(x+3)
x>0

解得x∈{1}
故p是q的必要不充分條件
故選B.
點評:判斷充要條件的方法是:①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•孝感模擬)已知f(x)=2sin(ωx+φ)的部分圖象如圖所示,則f(x)的表達式為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•孝感模擬)已知函數(shù)f(x+2)=
log2(-x),x<0
(
1
2
)x,x≥0
,則f(-2)+f(log212)
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•孝感模擬)如圖,正四面體ABCD的外接球球心為D,E是BC的中點,則直線OE與平面BCD所成角的正切值為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•孝感模擬)已知函數(shù)f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2mx+4

(I)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若對任意x1∈(0,2),總存在x2∈[1,2]使f(x1)≥g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•孝感模擬)設向量
a
=(
3
2
,cosθ),向量
b
=(sinθ,
1
3
),其
a
b
,則銳角θ為(  )

查看答案和解析>>

同步練習冊答案