有以下四個命題:①6054的倍數(shù);②梯形不是平行四邊形;③有兩個內角互補的四邊形是梯形或圓內接四邊形或平行四邊形;④等腰三角形的底角相等;其中簡單命題是________(只填序號)

答案:④
提示:

要注意簡單命題與復合命題的區(qū)別與關系.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有以下四個命題:
(1)2n>2n+1(n≥3);
(2)2+4+6+…+2n=n2+n+2(n≥1);
(3)凸n邊形內角和為f(n)=(n-1)π(n≥3);
(4)凸n邊形對角線條數(shù)f(n)=
n(n-2)2
(n≥4).
其中滿足“假設n=k(k∈N,k≥n0).時命題成立,則當n=k+1時命題也成立.”但不滿足“當n=n0(n0是題中給定的n的初始值)時命題成立”的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下四個命題:
①△ABC中,“A>B”是“sinA>sinB”的充要條件;
②若數(shù)列{an}為等比數(shù)列,且a4=4,a8=9,則a6=±6;
③不等式
|x-1|
x+5
≤0
的解集為{x|x<-5};
④若P是雙曲線
x2
9
-
y2
16
=1
上一點,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點,且|PF1|=7,則|PF2|=13.
其中真命題的序號為
 
.(把正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下四個命題:
①若命題p:?x∈R,x>sinx,則?p:?x∈R,x<sinx
②函數(shù)y=sin(x-
π
2
)在[0,π
]在R上是奇函數(shù).
③把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
向左平移
π
6
得到y(tǒng)=3sin2x的圖象.
④若函數(shù)f(x)=-cos2x+
1
2
(x∈R),則f(x)是最小正周期為φ=
π
3
的偶函數(shù)
⑤設圓x2+y2-4x-2y-8=0上有關于直線ax+2by-2=0(a,b>0)對稱的兩點,則
1
a
+
2
b
的最小值為3+2
2

其中正確命題的序號是
 
(把你認為正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•棗莊一模)有以下四個命題:
①若x,y∈R,i為虛數(shù)單位,且(x-2)i-y=-1+i,則(1+i)x+y的值為-4;
②將函數(shù)f(x)=cos(2x+
π
3
)+1的圖象向左平移
π
6
個單位后,對應的函數(shù)是偶函數(shù);
③若直線ax+by=4與圓x2+y2=4沒有交點,則過點(a,b)的直線與橢圓
x2
9
+
y2
4
=1有兩個交點;
④在做回歸分析時,殘差圖中殘差點分布的帶狀區(qū)域的寬度越窄相關指數(shù)越。
其中所有正確命題的序號為
①③
①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下四個命題(n∈N*):

(1)n=n+l;

(2)2n>2n+1(n≥3);

(3)2+4+6+…+2n=n2+n+2;

(4)凸n邊形對角線的條數(shù)f(n)=

其中滿足“假設n=k(k∈N*,k≥n0)時命題成立,則當n=k+1時命題也成立”,但不滿足“當n=n0(n0是題中給定的n的初始值)時命題成立”的命題序號是________________.

查看答案和解析>>

同步練習冊答案