(理科)已知集合A={x|4-2k<x<2k-8},B={x|-k<x<k},若A⊆B,則實(shí)數(shù)k的取值范圍為
k≤4
k≤4
分析:根據(jù)子集的定義,將A⊆B等價(jià)轉(zhuǎn)化條件,求解.
解答:解:∵A⊆B,
4-2k≥-k
2k-8≤k
k≤4
k≤8
⇒k≤4,
故答案是k≤4.
點(diǎn)評(píng):本題考查了集合的包含關(guān)系的判斷及應(yīng)用,要注意空集是其自身的子集.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知向量
a
=(sin2
π
6
x,cos2
π
6
x
),
b
=(sin2
π
6
x,-cos2
π
6
x
),g(x)=
a
b

(Ⅰ)求函數(shù)g(x)的解析式,并求其單調(diào)增區(qū)間;
(Ⅱ)若集合M={f(x)丨f(x)+f(x+2)=f(x+1),x∈R},試判斷g(x)與集合M的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知函數(shù)f(x)=
a•2x+a2-22x-1
(x∈R,x≠0)
,其中a為常數(shù),且a<0.
(1)若f(x)是奇函數(shù),求a的取值集合A;
(2)當(dāng)a=-1時(shí),設(shè)f(x)的反函數(shù)為f-1(x),且函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于y=x對(duì)稱(chēng),求g(1)的取值集合B;
(3)對(duì)于問(wèn)題(1)(2)中的A、B,當(dāng)a∈{a|a<0,a∉A,a∉B}時(shí),不等式x2-10x+9<a(x-4)恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科)已知函數(shù)數(shù)學(xué)公式,其中a為常數(shù),且a<0.
(1)若f(x)是奇函數(shù),求a的取值集合A;
(2)當(dāng)a=-1時(shí),設(shè)f(x)的反函數(shù)為f-1(x),且函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于y=x對(duì)稱(chēng),求g(1)的取值集合B;
(3)對(duì)于問(wèn)題(1)(2)中的A、B,當(dāng)a∈{a|a<0,a∉A,a∉B}時(shí),不等式x2-10x+9<a(x-4)恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理科)已知函數(shù)f(x)=
a•2x+a2-2
2x-1
(x∈R,x≠0)
,其中a為常數(shù),且a<0.
(1)若f(x)是奇函數(shù),求a的取值集合A;
(2)當(dāng)a=-1時(shí),設(shè)f(x)的反函數(shù)為f-1(x),且函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于y=x對(duì)稱(chēng),求g(1)的取值集合B;
(3)對(duì)于問(wèn)題(1)(2)中的A、B,當(dāng)a∈{a|a<0,a∉A,a∉B}時(shí),不等式x2-10x+9<a(x-4)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案