以直角坐標(biāo)系的原點為極點,x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線l的極坐標(biāo)方程為ρsin(θ-
π
3
)=6
,圓C的參數(shù)方程為
x=10cosθ
y=10sinθ
,(θ為參數(shù)),求直線l被圓C截得的弦長.
分析:先將直線的極坐標(biāo)方程化成普通方程,然后將圓的參數(shù)方程化為普通方程,利用點到直線的距離公式求出點C到直線的距離,最后用垂徑公式求出弦長即可.
解答:解:由ρsin(θ-
π
3
)=ρ(
1
2
sinθ-
3
2
cosθ)=6得ρsinθ-
3
ρcosθ
=12.
y-
3
x=12.

將圓的參數(shù)方程化為普通方程為x2+y2=10.圓心為C(0,0),半徑為10.
∴點C到直線的距離為d=
|0+0+12|
3+1
=6

∴直線l被圓截得的弦長為2
102-62
=16.
點評:本題主要考查直線和圓的極坐標(biāo)與參數(shù)方程,求弦長,考查運算求解能力及轉(zhuǎn)化的思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知圓C的參數(shù)方程為
x=2cosα
y=2sinα
(α為參數(shù)),直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
,則直線l被圓C所截的弦長為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點為極點,x軸的非負(fù)半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,點M的極坐標(biāo)是(4,
3
)
,則點M直角坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-4:坐標(biāo)與參數(shù)方程) 
以直角坐標(biāo)系的原點為極點,x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.
已知直線ι的極坐標(biāo)方程為ρsin(θ-
π
3
)=6
,圓C的參數(shù)方程為
x=10cos θ
y=10sin θ
(θ為參數(shù)),求直線ι被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(注意:本小題為選做題,A,B兩題選做其中一題,若都做了,則按A題答案給分)
A.當(dāng)x,y滿足條件|x-1|+|y+1|<1時,變量u=
x-1
y-2
的取值范圍是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線的極坐標(biāo)方程為θ=
π
4
(ρ∈R),它與曲線
x=1+2cosα
y=2+2sinα
(α為參數(shù))相交于A,B兩點,則以線段AB為直徑的圓的面積為
2
2

查看答案和解析>>

同步練習(xí)冊答案