10.(文)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,對任意n∈N+,有an+1=$\frac{2}{3}$Sn,則Sn=$(\frac{5}{3})^{n-1}$.

分析 由題意求得S1,并可得到數(shù)列{Sn}構(gòu)成以1為首項(xiàng),以$\frac{5}{3}$為公比的等比數(shù)列,再由等比數(shù)列的通項(xiàng)公式求得Sn

解答 解:∵a1=1,∴S1=a1=1,
由an+1=$\frac{2}{3}$Sn,得${S}_{n+1}-{S}_{n}=\frac{2}{3}{S}_{n}$,即${S}_{n+1}=\frac{5}{3}{S}_{n}$,
∴$\frac{{S}_{n+1}}{{S}_{n}}=\frac{5}{3}$,
則數(shù)列{Sn}構(gòu)成以1為首項(xiàng),以$\frac{5}{3}$為公比的等比數(shù)列,
∴${S}_{n}=1×(\frac{5}{3})^{n-1}$=$(\frac{5}{3})^{n-1}$.
故答案為:$(\frac{5}{3})^{n-1}$.

點(diǎn)評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,考查了等比數(shù)列通項(xiàng)公式的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.時(shí)間經(jīng)過10小時(shí),時(shí)鐘轉(zhuǎn)過的角的弧度數(shù)是(  )
A.$\frac{5}{3}$πB.-$\frac{5}{3}$πC.$\frac{5}{6}$πD.-$\frac{5}{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.兩個(gè)平面可以把空間分成3或4部分,三個(gè)平面可以把空間分成4或6或7或8部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的偶函數(shù)f(x)在x≥0時(shí),f(x)=ex+$\sqrt{x}$,若f(a)<f(a-1),則a的取值范圍是
( 。
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}中,a1=1,an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項(xiàng)公式為( 。
A.2n-1B.nC.${(\frac{n+1}{n})^{n-1}}$D.n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)雙曲線的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其左,右焦點(diǎn)分別為F1,F(xiàn)2,若雙曲線右支上一點(diǎn)P滿足∠F1PF2=$\frac{π}{3}$,${S}_{△P{F}_{1}{F}_{2}}$=$3\sqrt{3}{a^2}$,則該雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.△ABC中,角A,B,C所對邊的邊長分別為a,b,c,若$\frac{cosA}{cosB}$=$\frac{a}$,則△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2},(x≤1)}\\{x+1,(x>1)}\end{array}}\right.$,則f(f(-2))=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=4sin2x•{sin^2}({x+\frac{π}{4}})+cos({2π-4x})$,
(1)求f(x)的最小正周期;      
(2)若$g(x)=f({x+ϕ})({-\frac{π}{2}<ϕ<\frac{π}{2}})$在x=$\frac{π}{3}$處取得最大值,求y=g(x)的單調(diào)遞增區(qū)間;
(3)求(2)中y=g(x)在$x∈[{-\frac{π}{12},\frac{2π}{3}}]$上的值域.

查看答案和解析>>

同步練習(xí)冊答案