【題目】已知函數(shù)fx=xR),gx=2a-1

1)求函數(shù)fx的單調(diào)區(qū)間與極值

2)若fx≥gx恒成立,求實(shí)數(shù)a的取值范圍.

【答案】(1) 函數(shù)f(x)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

f(x)的極大值為6,極小值-26;(2)

【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,即可得到函數(shù)f(x)的單調(diào)區(qū)間與極值;(2)根據(jù)函數(shù)的單調(diào)性求出端點(diǎn)值和極值,從而求出f(x)的最小值,得到關(guān)于a的不等式,求出a的范圍即可.

試題解析:

(1)令,解得,

,解得:.

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

f(x)的極大值為f(-1)=6,極小值f(3)=-26

(2)由(1)知上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,

,,,

恒成立,

,即,∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的個(gè)數(shù)是(
①命題“x0∈R,x02+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax﹣sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量 的夾角是鈍角”的充分必要條件是“ <0”.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,直線l經(jīng)過點(diǎn)P(﹣1,0),其傾斜角為α,在以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中(取相同的長度單位),曲線C的極坐標(biāo)方程為ρ2﹣6ρcosθ+1=0. (Ⅰ)若直線l與曲線C有公共點(diǎn),求α的取值范圍;
(Ⅱ)設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)棱錐的三視圖如圖,則該棱錐的全面積為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)為, ,右頂點(diǎn)為,上頂點(diǎn)為, 軸垂直.

(1)求橢圓的方程;

(2)過點(diǎn)且不垂直與坐標(biāo)軸的直線與橢圓交于 兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù),若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為函數(shù)兩個(gè)不同零點(diǎn).

(1)若,且對任意,都有,求

(2)若,則關(guān)于的方程是否存在負(fù)實(shí)根?若存在,求出該負(fù)根的取值范圍,若不存在,請說明理由;

(3)若,且當(dāng)時(shí),的最大值為,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案