20.一架戰(zhàn)斗機以1000$\sqrt{2}$千米/小時速度朝東偏北45°方向水平飛行,發(fā)現(xiàn)正東100千米外同高度有一架民航飛機正在以800千米/小時速度朝正北飛行,如雙方都不改變速度與航向,兩機最小距離在哪個區(qū)間內(nèi)(單位:千米)( 。
A.(0,5)B.(5,10)C.(10,15)D.(15,20)

分析 建立如圖所示的坐標(biāo)系,t小時后,A(1000t,1000t),B(100,800t),求出|AB|,可得|AB|的最小值,即可得出結(jié)論.

解答 解:建立如圖所示的坐標(biāo)系,t小時后,A(1000t,1000t),B(100,800t),
則|AB|=$\sqrt{(1000t-100)^{2}+40000{t}^{2}}$=$\sqrt{1040000{t}^{2}-200000t+10000}$,
t=$\frac{5}{52}$時,|AB|的最小值為$\sqrt{\frac{4×1040000×10000-20000{0}^{2}}{4×1040000}}$=$\frac{50\sqrt{26}}{13}$∈(15,20).
故選D.

點評 本題考查坐標(biāo)系的運用,考查距離公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,點M和N分別是B1C1和BC的中點.
(1)求證:MB∥平面AC1N;
(2)求證:AC⊥MB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù))
(1)將C的參數(shù)方程化為普通方程;
(2)在直角坐標(biāo)系xOy中,P(0,2),以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+$\sqrt{3}$ρsinθ+2$\sqrt{3}$=0,Q為C上的動點,求線段PQ的中點M到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),直線l為圓O:x2+y2=b2的一條切線并且過橢圓的右焦點,記橢圓的離心率為e.
(1)求橢圓的離心率e的取值范圍;
(1)若直線l的傾斜角為$\frac{π}{6}$,求e的大。
(2)是否存在這樣的e,使得原點O關(guān)于直線l對稱的點恰好在橢圓C上,若存在,請求出e的大小;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-b{x^2}$+2x-a,x=2是f(x)的一個極值點.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時,求方程f(x)=0的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=logax(a>0且a≠1)的圖象經(jīng)過點$(\;2\sqrt{2}\;,\;-1\;)$,函數(shù)y=bx(b>0且b≠1)的圖象經(jīng)過點$(\;1\;,\;2\sqrt{2})$,則下列關(guān)系式中正確的是( 。
A.a2>b2B.2a>2bC.${({\frac{1}{2}})^a}>{({\frac{1}{2}})^b}$D.(a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點$M(2,2\sqrt{6})$,點F為拋物線y2=2px(p>0)的焦點,點P是該拋物線上的一個動點.若|PF|+|PM|的最小值為5,則p的值為2或6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.?dāng)?shù)獨游戲越來越受人們喜愛,今年某地區(qū)科技館組織數(shù)獨比賽,該區(qū)甲、乙、丙、丁四所學(xué)校的學(xué)生積極參賽,參賽學(xué)生的人數(shù)如表所示:
中學(xué) 甲 乙 丙 丁
人數(shù) 30 40 20 10
為了解參賽學(xué)生的數(shù)獨水平,該科技館采用分層抽樣的方法從這四所中學(xué)的參賽學(xué)生中抽取30名參加問卷調(diào)查.
(Ⅰ)問甲、乙、丙、丁四所中學(xué)各抽取多少名學(xué)生?
(Ⅱ)從參加問卷調(diào)查的30名學(xué)生中隨機抽取2名,求這2名學(xué)生來自同一所中學(xué)的概率;
(Ⅲ)在參加問卷調(diào)查的30名學(xué)生中,從來自甲、丙兩所中學(xué)的學(xué)生中隨機抽取2名,用X表示抽得甲中學(xué)的學(xué)生人數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知AB是圓C:x2+y2-4x+2y+a=0的一條弦,M(1,0)是弦AB的中點,若AB=3,則實數(shù)a的值是$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案