如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=
(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.

【答案】分析:(Ⅰ)法一:由AD∥BC,BC=AD,Q為AD的中點(diǎn),知四邊形BCDQ為平行四邊形,故CD∥BQ.由∠ADC=90°,知QB⊥AD.由平面PAD⊥平面ABCD,知BQ⊥平面PAD.由此能夠證明平面PQB⊥平面PAD.
法二:由AD∥BC,BC=AD,Q為AD的中點(diǎn),知四邊形BCDQ為平行四邊形,故CD∥BQ.由∠ADC=90°,知∠AQB=90°.由PA=PD,知PQ⊥AD,故AD⊥平面PBQ.由此證明平面PQB⊥平面PAD.
(Ⅱ)由PA=PD,Q為AD的中點(diǎn),知PQ⊥AD.由平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,知PQ⊥平面ABCD.以Q為原點(diǎn)建立空間直角坐標(biāo)系,利用向量法能夠求出t=3.
解答:(本小題滿分15分)
(Ⅰ)證法一:∵AD∥BC,BC=AD,Q為AD的中點(diǎn),
∴四邊形BCDQ為平行四邊形,∴CD∥BQ.
∵∠ADC=90°∴∠AQB=90°,即QB⊥AD.
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.
∵BQ?平面PQB,∴平面PQB⊥平面PAD. …(9分)
證法二:AD∥BC,BC=AD,Q為AD的中點(diǎn),
∴四邊形BCDQ為平行四邊形,∴CD∥BQ.
∵∠ADC=90°∴∠AQB=90°.
∵PA=PD,∴PQ⊥AD.
∵PQ∩BQ=Q,∴AD⊥平面PBQ.
∵AD?平面PAD,∴平面PQB⊥平面PAD.…(9分)
解:(Ⅱ)∵PA=PD,Q為AD的中點(diǎn),∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如圖,以Q為原點(diǎn)建立空間直角坐標(biāo)系.
則平面BQC的法向量為;
Q(0,0,0),,,
設(shè)M(x,y,z),則,,
,
,∴…(12分)
在平面MBQ中,,,
∴平面MBQ法向量為.…(13分)
∵二面角M-BQ-C為30°,

∴t=3.…(15分)
點(diǎn)評(píng):本題考查平面與平面垂直的證明,求實(shí)數(shù)的取值.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化,合理地運(yùn)用向量法進(jìn)行解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案