1.六名同學(xué)A、B、C、D、E、F舉行象棋比賽,采取單循環(huán)賽制,即參加比賽的每兩個人之間僅賽一局.第一天,A、B各參加了3局比賽,C、D各參加了4局比賽,E參加了2局比賽,且A與C沒有比賽過,B與D也沒有比賽過.那么F在第一天參加的比賽局?jǐn)?shù)為( 。
A.1B.2C.3D.4

分析 從A、B各參加了3局比賽,C、D各參加了4局比賽,E參加了2局比賽,且A與C沒有比賽過,B與D也沒有比賽過這個已知條件入手,進(jìn)而可一步一步推得每個人分別與那幾個人下了幾局,最后即可得出F最終下了幾局.

解答 解:由于A、B各參加了3局比賽,C、D各參加了4局比賽,E參加了2局比賽,且A與C沒有比賽過,B與D也沒有比賽過,
所以與D賽過的是A、C、E、F四人;
與C賽過的是B、D、E、F四人;
又因?yàn)镋只賽了兩局,A與B各賽了3局,
所以與A賽過的是D、B、F;
而與B賽過的是A、C、F;
所以F共賽了4局.
故選D.

點(diǎn)評 本題主要考查了推理與論證的問題,能夠通過已知條件找出突破口,從而通過推理得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l:y=2x+n,n∈R,圓M的圓心在y軸,且過點(diǎn)(1,1).
(1)當(dāng)n=-2時,若圓M與直線l相切,求該圓的方程;
(2)設(shè)直線l關(guān)于y軸對稱的直線為l′,試問直線l′與拋物線N:x2=6y是否相切?如果相切,求出切點(diǎn)坐標(biāo);如果不想切,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,a,b,c分別是A,B,C的對邊,$a=2\sqrt{3},b=2\sqrt{2}$,且1+2cos(B+C)=0,則BC邊上的高等于( 。
A.$2({\sqrt{3}+1})$B.$2({\sqrt{3}-1})$C.$\sqrt{3}+1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,角A,B,C所對的邊分別為a,b,c,若A,B,C成等差數(shù)列,2a,2b,2c成等比數(shù)列,則sinAcosBsinC=( 。
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{8}$D.$\frac{\sqrt{3}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={-1,1,2,3},B={x|x≥2},那么A∩B等于( 。
A.{3}B.{2,3}C.{-1,2,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等比數(shù)列{an}的公比為q,且q≠1,a1=2,3a1,2a2,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}是一個首項(xiàng)為-6,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≤3\\ x+y≥0\\ x-y+6≥0.\end{array}\right.$若z=ax+y的最大值為3a+9,最小值為3a-3,則a的取值范圍是( 。
A.[-1,0]B.[0,1]C.[-1,1]D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.對于函數(shù)f(x),若存在實(shí)數(shù)x0滿足f(x0)=x0,則稱x0為函數(shù)f(x)的一個不動點(diǎn).已知函數(shù)f(x)=x3+ax2+bx+3,其中a,b∈R
(Ⅰ)當(dāng)a=0時,
(。┣骹(x)的極值點(diǎn);
(ⅱ)若存在x0既是f(x)的極值點(diǎn),又是f(x)的不動點(diǎn),求b的值;
(Ⅱ)若f(x)有兩個相異的極值點(diǎn)x1,x2,試問:是否存在a,b,使得x1,x2 均為f(x)的不動點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD的底面為矩形,PA是四棱錐的高,AP=AB=2,F(xiàn)是PB的中點(diǎn),E是BC上的動點(diǎn).
(1)證明:PE⊥AF;
(2)若BC=2BE=4$\sqrt{3}$,求直線AP與平面PDE所成角的大。

查看答案和解析>>

同步練習(xí)冊答案