(本題滿分16分)
如圖,橢圓C:=1(a>b>0)的焦點(diǎn)F1,F(xiàn)2和短軸的一個(gè)端點(diǎn)A構(gòu)成等邊三角形,
點(diǎn)(,)在橢圓C上,直線l為橢圓C的左準(zhǔn)線.
(1) 求橢圓C的方程;
(2) 點(diǎn)P是橢圓C上的動(dòng)點(diǎn),PQ ⊥l,垂足為Q.
是否存在點(diǎn)P,使得△F1PQ為等腰三角形?
若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
(1) + =1.(2)存在點(diǎn)P(-,±),使△PF1Q為等腰三角形
本題主要考查了橢圓的標(biāo)準(zhǔn)方程.考查了學(xué)生綜合分析問題和解決問題的能力
(Ⅰ)設(shè)出橢圓方程,根據(jù)△AF1F2為正三角形可推斷出a和b的關(guān)系,設(shè)b2=3λ,a2=4λ,代入橢圓方程,進(jìn)而把點(diǎn)(,)代入即可求得λ,則橢圓的方程可得.
(Ⅱ)根據(jù)(1)可求得橢圓的離心率,進(jìn)而求得PF1和PQ的關(guān)系,假設(shè)PF1=F1Q根據(jù)PF1= PQ推斷出PF1+F1Q=PQ,與“三角形兩邊之和大于第三邊”矛盾,假設(shè)不成立,再看若F1Q=PQ,設(shè)出P點(diǎn)坐標(biāo),則Q點(diǎn)坐標(biāo)可得,進(jìn)而表示出F1Q和PQ求得x和y的關(guān)系,與橢圓方程聯(lián)立求得P點(diǎn)坐標(biāo).判斷出存在點(diǎn)P,使得△PF1Q為等腰三角形。
(1)橢圓C的方程為=1(a>b>0),由已知△AF1F2為正三角形,所以
sin∠AF1O=,所以,
設(shè)b2=3λ,a2=4λ,橢圓方程為=λ.
橢圓經(jīng)過點(diǎn)(),解得λ=1,所以橢圓C的方程為 + =1.
(2)由=e=,得PF1PQ.所以PF1≠PQ.
①若PF1=F1Q,則PF1+F1Q=PQ,與“三角形兩邊之和大于第三邊”矛盾,
所以PF1不可能與PQ相等
②若F1Q=PQ,設(shè)P(x,y)(x≠±2),則Q(-4,y).∴=4+x,
∴9+y2=16+8x+x2,又由=1,得y2=3-x2
∴9+3-x2=16+8x+x2,∴x2+8x+4=0.
∴7x2+32x+16=0.∴x=-或x=-4.
因?yàn)閤∈(-2,2),所以x=-.所以P(-,±).
存在點(diǎn)P(-,±),使△PF1Q為等腰三角形
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:












 
1)求,的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率;
2)設(shè)直線與橢圓交于不同的兩點(diǎn),且(其中坐標(biāo)原點(diǎn)),請(qǐng)問是否存在這樣的直線過拋物線的焦點(diǎn)若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與橢圓相交于兩點(diǎn),該橢圓上點(diǎn)使的面積等于6,這樣的點(diǎn)共有(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點(diǎn)是曲線上的點(diǎn),,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓=1的右焦點(diǎn)到直線y=x的距離是                    (  )
A.     B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過兩點(diǎn);
(2)經(jīng)過點(diǎn)(2,-3)且與橢圓具有共同的焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線,橢圓,直線與橢圓的公共點(diǎn)的個(gè)數(shù)為(      )
A. 1個(gè)B.1個(gè)或者2個(gè)C. 2個(gè)D. 0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是橢圓上的一點(diǎn),、為焦點(diǎn),,則的面積為(  )
A.   B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案