【題目】已知函數(shù)f(x)=x2﹣2|x﹣a|.
(1)若函數(shù)y=f(x)為偶函數(shù),求a的值;
(2)若a= ,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)a>0時(shí),若對任意的x∈(0,+∞),不等式f(x﹣1)≤2f(x)恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:任取∈R,則有f(﹣x)=f(x)恒成立,即x2﹣2|﹣x﹣a|=x2﹣2|x﹣a|恒成立,
∴|x+a|=|x﹣a|恒成立,∴平方得2ax=﹣2ax恒成立,∴a=0
(2)解:當(dāng)a= 時(shí),f(x)=x2﹣2|x﹣a|= ,
由函數(shù)的圖象可知,函數(shù)的單調(diào)遞增區(qū)間為(﹣1, ]、[1,+∞)
(3)解:不等式式f(x﹣1)≤2f(x)化為(x﹣1)2﹣2|x﹣1﹣a|≤2x2﹣4|x﹣a|,
即:4|x﹣a|﹣2|x﹣1﹣a|≤x2+2x﹣1 (※),
對任意的x∈(0,+∞)恒成立,因?yàn)閍>0,所以分如下情況討論:
①0≤x≤a時(shí),不等式(※)化為﹣4(x﹣a)+2[x﹣(1+a)]≤x2+2x﹣1恒成立,
即x2+4x+1﹣2a≥0對x∈[0,a]恒成立,
∵g(x)=x2+4x+1﹣2a在[0,a]上單調(diào)遞增,
只需g(x)的最小值g(0)=1﹣2a≥0,∴0<a≤ .
②當(dāng)a<x≤a+1時(shí),不等式(※)化為 4(x﹣a)+2[x﹣(1+a)]≤x2+2x﹣1恒成立,
即 x2﹣4x+1+16a≥0對x∈(a,1+a]恒成立恒成立,
由①知0<a< ,∴h(x)=x2﹣4x+1+16a在∈(a,1+a]上單調(diào)遞減,
∴只需h(x)的最小值h(1+a)=a2+4a﹣2≥0,∴a≤﹣2﹣ 或a≥ ﹣2,
∵ ﹣2< ,∴ ﹣2≤a≤ .
③當(dāng)x>a+1時(shí),不等式(※)化為 4(x﹣a)﹣2[x﹣(1+a)]≤x2+2x﹣1恒成立,
即 x2+2a﹣3≥0 對x∈(a+1,+∞)恒成立.
由于m(x)=x2+2a﹣3≥0,且m(x)在[a+1,+∞)上單調(diào)遞增,
∴只需m(x)的最小值m(1+a)=a2+4a﹣2≥0,∴a≤﹣2﹣ 或a≥ ﹣2,
由②得: ﹣2≤a≤ .
綜上所述,a的取值范圍是: ﹣2≤a≤
【解析】(1)根據(jù)f(﹣x)=f(x)恒成立,求得a的值.(2)當(dāng)a= 時(shí),f(x)=x2﹣2|x﹣a|= ,結(jié)合它的圖象得到函數(shù)的單調(diào)增區(qū)間.(3)不等式即4|x﹣a|﹣2|x﹣1﹣a|≤x2+2x﹣1 (※),分類討論,去掉絕對值,求得它的解集.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)奇偶性的性質(zhì),掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓x2+y2﹣12x+32=0的圓心為Q,過點(diǎn)P(0,2)且斜率為k的直線與圓Q相交于不同的兩點(diǎn)A,B.
(1)求k的取值范圍;
(2)是否存在常數(shù)k,使得向量 與 共線?如果存在,求k值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元,距離陸豐市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率分布直方圖:
附:臨界值參考公式: ,n=a+b+c+d.
(1)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)小明向班級(jí)同學(xué)發(fā)出倡議,為該小區(qū)居民損款,現(xiàn)從損失超過4000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,投抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(3)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召該小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如表,在表格空白外填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過4000元 | 經(jīng)濟(jì)損失超過4000元 | 合計(jì) | |
捐款超過500元 | 30 | ||
損款不超過500元 | 6 | ||
合計(jì) |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知點(diǎn)A(-1,-2),B(1,3),P為x軸上的一點(diǎn),求|PA|+|PB|的最小值;
(2)已知點(diǎn)A(2,2),B(3,4),P為x軸上一點(diǎn),求||PB|-|PA||的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=2,且an=2an﹣1﹣1(n∈N* , N≥2)
(1)求證:數(shù)列{an﹣1}為等比數(shù)列;并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan﹣n}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在路邊安裝路燈,燈柱的高為米,路寬為23米,燈桿與燈柱角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直,請你建立適當(dāng)直角坐標(biāo)系,解決以下問題:
(1)當(dāng)
(2)且燈罩軸線正好通過道路路面的中線時(shí),求燈桿的長為多少米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3ax2﹣9a2x+a3 . 若a> ,且當(dāng)x∈[1,4a]時(shí),|f′(x)|≤12a恒成立,則a的取值范圍為( )
A.( , ]
B.( ,1]
C.[﹣ ,1]
D.[0, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (θ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)方程.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求|OM|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)研究發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:f(t)= ,
(1)求出k的值,并指出講課開始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多久?
(2)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到185,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com