【題目】若數(shù)列滿(mǎn)足; , ),稱(chēng)數(shù)列數(shù)列,記為其前項(xiàng)和.

(Ⅰ)寫(xiě)出一個(gè)滿(mǎn)足,且數(shù)列

(Ⅱ)若, ,證明:若數(shù)列是遞增數(shù)列,則;反之,若,則數(shù)列是遞增數(shù)列;

(Ⅲ)對(duì)任意給定的整數(shù)),是否存在首項(xiàng)為0的數(shù)列,使得?如果存在,寫(xiě)出一個(gè)滿(mǎn)足條件的數(shù)列;如果不存在,說(shuō)明理由.

【答案】(Ⅰ) (Ⅱ)證明見(jiàn)解析(Ⅲ)見(jiàn)解析

【解析】試題分析:(Ⅰ)由題 是一個(gè)滿(mǎn)足條件的 數(shù)列{
(Ⅱ)若數(shù)列{是遞增數(shù)列,則 ,推導(dǎo)出{是首項(xiàng)為2,公差為1的等差數(shù)列,從而得到 ;反之,若 ,由 (當(dāng)且僅當(dāng) 時(shí),等號(hào)成立),推導(dǎo)出E數(shù)列{是遞增數(shù)列.(Ⅲ) ,知數(shù)列{中相鄰兩項(xiàng) 奇偶性相反,即 為偶數(shù) 為奇數(shù),由此利用分類(lèi)討論思想能求出結(jié)果.

試題解析:(Ⅰ)0,1,2,1,0是一個(gè)滿(mǎn)足條件的數(shù)列.

(答案不唯一,0,1,0,1,0也是一個(gè)滿(mǎn)足條件的數(shù)列

(Ⅱ)若數(shù)列是遞增數(shù)列,則),

所以是首項(xiàng)為2,公差為1的等差數(shù)列.

.

反之,若,由于(等號(hào)成立當(dāng)且僅當(dāng)),

所以

即對(duì),恒有,故數(shù)列是遞增數(shù)列.

(Ⅲ)由,知數(shù)列中相鄰兩項(xiàng)、奇偶性相反,即, , ,……為偶數(shù), , , ,……為奇數(shù).

①當(dāng))時(shí),存在首項(xiàng)為0的數(shù)列,使得.

例如,構(gòu)造 ,…, ,…, ,其中,

, ,

②當(dāng))時(shí),也存在首項(xiàng)為0的數(shù)列,使得.

例如,構(gòu)造 ,…, ,…,

其中, , ),.

③當(dāng))時(shí),數(shù)列中偶數(shù)項(xiàng), , ,……共有奇數(shù)項(xiàng),且, , ,……均為奇數(shù),所以和為奇數(shù).

又和為偶數(shù),因此為奇數(shù)即.

此時(shí),滿(mǎn)足條件的數(shù)列不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量函數(shù)

(1)求函數(shù)的值域;

(2)求方程,在內(nèi)的所有實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一項(xiàng)針對(duì)人們休閑方式的調(diào)查結(jié)果如下:受調(diào)查對(duì)象總計(jì)124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;

(2)根據(jù)下列提供的獨(dú)立檢驗(yàn)臨界值表,你最多能有多少把握認(rèn)為性別與休閑方式有關(guān)系?

獨(dú)立檢驗(yàn)臨界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校用10分制調(diào)查本校學(xué)生對(duì)教師教學(xué)的滿(mǎn)意度,現(xiàn)從學(xué)生中隨機(jī)抽取16名,以下莖葉圖記錄了他們對(duì)該校教師教學(xué)滿(mǎn)意度的分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):

)若教學(xué)滿(mǎn)意度不低于9.5分,則稱(chēng)該生對(duì)教師的教學(xué)滿(mǎn)意度為極滿(mǎn)意.求從這16人中隨機(jī)選取3人,至少有1人是極滿(mǎn)意的概率;

)以這16人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校所有學(xué)生中(學(xué)生人數(shù)很多)任選3人,記表示抽到極滿(mǎn)意的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)測(cè)算,某型號(hào)汽車(chē)在勻速行駛過(guò)程中每小時(shí)耗油量 (升)與速度 (千米/每小時(shí)) 的關(guān)系可近似表示為:.

)該型號(hào)汽車(chē)速度為多少時(shí),可使得每小時(shí)耗油量最低?

)已知兩地相距120公里,假定該型號(hào)汽車(chē)勻速?gòu)?/span>地駛向地,則汽車(chē)速度為多少時(shí)總耗油量最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的短軸長(zhǎng)為2,且函數(shù)的圖象與橢圓僅有兩個(gè)公共點(diǎn),過(guò)原點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)為線(xiàn)段的中垂線(xiàn)與橢圓的一個(gè)公共點(diǎn),求面積的最小值,并求此時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知焦點(diǎn)在軸上的橢圓的中心是原點(diǎn),離心率為,以橢圓的端州的兩端點(diǎn)和兩焦點(diǎn)所圍成的四邊形的周長(zhǎng)為8,直線(xiàn)軸交于點(diǎn)與橢圓交于不同兩點(diǎn),

(1)求橢圓的標(biāo)準(zhǔn)方程

(2)若,的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)若,試討論關(guān)于的方程的解的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線(xiàn)與橢圓相交于兩點(diǎn)且.求證: 的面積為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案