13.已知全集U={1,2,3,4,5,6},集合A={1,2,3,4},B={1,3,5},則∁U(A∪B)={6}.

分析 先求出A∪B,可得∁U(A∪B).

解答 解:A∪B={1,2,3,4,5},
∴∁U(A∪B)={6}.
故答案為:{6}.

點評 本題考查了集合的運算法則,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.下列函數(shù)中,在區(qū)間(0,1)上是減函數(shù)是( 。
A.y=|x+1|B.y=3-xC.y=$-\frac{1}{x}$D.y=x2-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.直線x+y+2=0被圓x2+y2+2x-2y+a=0所截得的弦長為4,則a=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-ax
(1)討論函數(shù)f(x)的單調性;
(2)當a=1時,求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+$\frac{1}{x}$+2的圖象關于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)求f(x)在(0,8]內的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.下列命題:
①$\vec a$•$\vec 0$=$\vec 0$;
②0•$\vec a$=0;
③$\vec 0$-$\overrightarrow{AB}$=$\overrightarrow{BA}$;
④|$\vec a$•$\vec b$|=|$\vec a$||$\vec b$|;
⑤若$\vec a$≠$\vec 0$,則對任一非零$\vec b$有$\vec a$•$\vec b$≠0;
⑥$\vec a$•$\vec b$=0,則$\vec a$與$\vec b$中至少有一個為$\vec 0$;
⑦對任意向量$\vec a$,$\vec b$,$\vec c$都有($\vec a$•$\vec b$)•$\vec c$=$\vec a$•($\vec b$•$\vec c$);
⑧$\vec a$與$\vec b$是兩個單位向量,則$\vec a$2=$\vec b$2
其中正確的是③⑧(把正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為4,點(2,-$\sqrt{2}}$)在C上
(1)求橢圓C有方程;
(2)若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知A={x|{x2+2x-3>0},B={x|$\frac{x-2}{x+2}$≤0},則(∁UA)∩B=( 。
A.(-2,+∞)B.(-2,1]C.[-1,2]D.(-3,-2)∪[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=lnx+$\frac{1}{2}$ax2+x+1.
(1)當a=-2時,求函數(shù)f(x)的極值點;
(2)當a=0時,證明:xex≥f(x)在(0,+∞)上恒成立.

查看答案和解析>>

同步練習冊答案