精英家教網 > 高中數學 > 題目詳情
求下列各三角函數值:
(1)tan(-
π
6
);
(2)sin(-390°);
(3)cos(-
3
).
考點:運用誘導公式化簡求值
專題:三角函數的求值
分析:直接利用誘導公式以及特殊角的三角函數化簡求解即可.
解答: 解:(1)tan(-
π
6
)=-tan
π
6
=-
3
3
;
(2)sin(-390°)=-sin390°=-sin30°=-
1
2
;
(3)cos(-
3
)=cos
3
=cos
π
3
=
1
2
點評:本題考查誘導公式的應用,三角函數的化簡求值,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=-x2+2ax-2a+b,且f(1)=0.
(1)若f(x)在區(qū)間(2,3)上有零點,求實數a的取值范圍;
(2)若f(x)在[0,3]上的最大值是2,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

集合A={-1,0,1},B={1,2,3},映射f:A→B,則f(-1)+f(1)的最大值是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數學 來源: 題型:

計算下列各式的值
1
4
-1+(
1
6
6
 
1
3
+
3
+
2
3
-
2
-(1.03)0•(-
6
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合A={(x,y)|y=x}與集合B={(x,y)|x=a+
1-y2
,a∈R},若A∩B的元素只有一個,則實數a的取值范圍是( 。
A、a=±
2
B、-1<a<1或a=±
2
C、a=
2
或-1≤a<1
D、-1<a≤1或a=-
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
2
sin2x-cos2x-
1
2

(1)求函數f(x)在[0,
π
2
]的最大值和最小值,并給出取得最值時的x值;
(2)設△ABC的內角A、B、C的對邊分別為a,b,c,且c=
3
,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,直線l:x-my-1=0(m∈R)過橢圓C的右焦點F,且交橢圓C于A,B兩點.
(1)求橢圓C的標準方程;
(2)已知點D(
5
2
,0),連結BD,過點A作垂直于y軸的直線l1,設直線l1與直線BD交于點P,試探索當m變化時,是否存在一條定直線l2,使得點P恒在直線l2上?若存在,請求出直線l2的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2
3
sinxcosx-3sin2x-cos2x+2.
(1)當x∈[0,
π
2
]時,求f(x)的值域;
(2)若△ABC的內角A,B,C的對邊分別為a,b,c,且滿足
b
a
=
3
,
sin(2A+C)
sinA
=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E是CC1的中點,F是AC與BD的交點.
(1)求證:BD⊥A1F;
(2)求直線BE與平面A1EF所成角的正弦值.

查看答案和解析>>

同步練習冊答案