精英家教網(wǎng)橢圓
x2
9
+
y2
2
=1的焦點為F1、F2,點P在橢圓上,若|PF1|=4,則|PF2|=
 
,∠F1PF2的大小為
 
分析:第一問用定義法,由|PF1|+|PF2|=6,且|PF1|=4,易得|PF2|;第二問如圖所示:角所在三角形三邊已求得,用余弦定理求解.
解答:解:∵|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=2.
在△F1PF2中,
cos∠F1PF2
=
|PF1|2+|PF2|2-|F1F2|2
2|PF1|•|PF2|

=
16+4-28
2×4×2
=-
1
2

∴∠F1PF2=120°.
故答案為:2;120°
點評:本題主要考查橢圓定義的應(yīng)用及焦點三角形問題,這類題是?碱愋停y度不大,考查靈活,特別是對曲線的定義和性質(zhì)考查的很到位.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
2
=1
的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,∠F1PF2的大小為
120°
120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
2
=1
的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,則∠F1PF2的大小為
3
3
,△F1PF2的面積為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
2
=1
的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,則|PF2|=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
2
=1
的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,則△PF1F2的面積等于
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
2
=1
的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,則∠F1PF2的大。ā 。
A、60°B、120°
C、150°D、30°

查看答案和解析>>

同步練習(xí)冊答案