若2∈{x|x(x-m)<0,m∈Z},則m的最小值為   
【答案】分析:根據(jù){x|x(x-m)<0,m∈Z}對m進行分類討論,m>0,{x|x(x-m)<0,m∈Z}={x|0<x<m,m∈Z};m=0,根據(jù)x(x-m)<0轉(zhuǎn)化為x2<0,而x2≥0,故舍去;m<0,{x|x(x-m)<0}={x|m<x<0,m∈Z};在根據(jù)2∈{x|x(x-m)<0,m∈Z}知{x|x(x-m)<0,m∈Z}={x|0<x<m,m∈Z}即可求解
解答:解:當m>0時
∴{x|x(x-m)<0,m∈Z}={x|0<x<m,m∈Z}
  當m=0時
∴x(x-m)<0轉(zhuǎn)化為x2<0,而x2≥0,故舍去
  m<0時
∴{x|x(x-m)<0}={x|m<x<0,m∈Z}
∵2∈{x|x(x-m)<0,m∈Z}
∴{x|x(x-m)<0,m∈Z}={x|0<x<m,m∈Z}
∴m的最小值為 3
故答案為3
點評:本題考查了集合關系中的參數(shù)取值問題,分類討論也是解題的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于定義在D上的函數(shù)y=f(x),若同時滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對于D內(nèi)任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)(理)設f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數(shù)x的范圍;
(文)設f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是區(qū)間D⊆[0,+∞)上的增函數(shù).若f(x)可表示為f(x)=f1(x)+f2(x),其中f1(x)是D上的增函數(shù),f2(x)是D上的減函數(shù),且函數(shù)f2(x)的值域A⊆[0,+∞),則稱函數(shù)f(x)的區(qū)間D上的“偏增函數(shù)”
(1)試說明y=sinx+cosx是區(qū)間(0,
π
4
)上的“偏增函數(shù)”;
(2)記f1(x)=x,f2(x)=
a
x
(a為常數(shù)),是判斷f(x)=f1(x)+f2(x)是否是區(qū)間(0,1]上的“偏增函數(shù)”,若是,證明你的結(jié)論,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若2∈{x|x(x-m)<0,m∈Z},則m的最小值為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省廈門一中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

設二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當x∈R時,f(x-4)=f(2-x),且;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數(shù)學 來源:0119 期中題 題型:填空題

下列說法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
既是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當x∈[0,+∞)時,f(x)=x(1+x),則當x∈R時,f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù);
其中所有正確命題的序號是(    )。

查看答案和解析>>

同步練習冊答案