精英家教網 > 高中數學 > 題目詳情
下列說法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數,則實數b=2;
既是奇函數又是偶函數;
③已知f(x)是定義在R上的奇函數,若當x∈[0,+∞)時,f(x)=x(1+x),則當x∈R時,f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數,且對任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數;
其中所有正確命題的序號是(    )。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列說法中:
①函數f(x)=
x-1
x+1
與g(x)=x的圖象沒有公共點;
②若定義在R上的函數f(x)滿足f(x+2)=-f(x-1),則函數f(x)周期為6;
③若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
④函數y=log2(x2-ax-a)的值域為R,則a∈(-4,0);
其中正確命題的序號為
 
(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法中:
①函數f(x)=
x-1
x+1
與g(x)=x的圖象沒有公共點;
②若定義在R上的函數f(x)滿足f(x+3)=-f(x),則6為函數f(x)的周期;
③若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
④定義:“若函數f(x)對于任意x∈R,都存在正常數M,使|f(x)|≤M|x|恒成立,則稱函數f(x)為有界泛函.”由該定義可知,函數f(x)=x2+1為有界泛函.
則其中正確的是
①②③
①②③

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數,則實數b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數f(x)的最大值為1;
③若函數f(x)=|2x+a|的單調遞增區(qū)間是[3,+∞),則a=-6;
④已知f(x)是定義在R上的不恒為零的函數,且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數.
其中正確說法的序號是
①③④
①③④
(注:把你認為是正確的序號都填上).

查看答案和解析>>

科目:高中數學 來源:0110 期中題 題型:填空題

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數,則實數b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數f(x)的最大值為1;
③如果在[-1,∞)上是減函數,則實數a的取值范圍是(-8,-6];
④已知f(x)是定義在R上的不恒為零的函數,且對任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數;
其中正確說法的序號是(    )(注:把你認為是正確的序號都填上)。

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法中:

①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數,則實數b=2;

②f(x)表示 -2x+2與-2x2+4x+2中的較小者,則函數f(x)的最大值為1;

③如果在[-1,∞上是減函數,則實數a的取值范圍是(-8,-6;

④已知f(x)是定義在R上的不恒為零的函數,且對任意的x,y∈R都滿足

f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數.

其中正確說法的序號是____________________(注:把你認為是正確的序號都填上).

查看答案和解析>>

同步練習冊答案