已知函數(shù)f(x)對任意實數(shù)x均有f(x)=kf(x+2),其中常數(shù)k為負數(shù),且f(x)在區(qū)間[0,2]有表達式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值(用k表示);
(2)寫出f(x)在[-3,2]上的表達式,并討論f(x)在[-3,2]上的單調性(不要證明);
(3)求出f(x)在[-3,2]上最小值與最大值,并求出相應的自變量的取值.
(1)f(-1)=kf(1)=k(-1)=-k 2分 f(2.5)=f(0.5)=××(-)=- 4分 x∈[-2,0]時,x+2∈[0,2] ∴f(x)=kf(x+2)=k(x+2)x 6分 x∈[-3,-2)時 x+2∈[-1,0) ∴f(x)=kf(x+2)=k2(x+4)(x+2) 8分 ∴f(x)= (2)f(x)在[-3,-1]上單調增,在[1,2]單調增在[-1,1]上單調減 12分 (3)x=-1,f(x)max=-k 13分 k=-1,f(x)min=-1,此時x=1或x=-3 14分 k<-1時,f(x)min=-k2,此時x=-3 15分 -1<k<0時,f(x)min=-1,此時x=1 16分 |
科目:高中數(shù)學 來源: 題型:
ab |
查看答案和解析>>
科目:高中數(shù)學 來源:北京市海淀區(qū)2012屆高三下學期期中練習數(shù)學文科試題 題型:022
已知函數(shù)f(x)=則f(f(x))=________;
下面三個命題中,所有真命題的序號是________.
①函數(shù)f(x)是偶函數(shù);
②任取一個不為零的有理數(shù)T,f(x+T)=f(x)對x∈R恒成立;
③存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))使得△ABC為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(上海卷) 題型:044
若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m.
(1)若x2-1比1遠離0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠離2ab;
(3)已知函數(shù)f(x)的定義域.任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(結論不要求證明).
查看答案和解析>>
科目:高中數(shù)學 來源:2010年全國普通高等學校招生統(tǒng)一考試、文科數(shù)學(上海卷) 題型:044
若實數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab;
(3)已知函數(shù)f(x)的定義域D={x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調性(結論不要求證明).
查看答案和解析>>
科目:高中數(shù)學 來源:上海高考真題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com