(本小題滿分12分)

已知數(shù)列{a}的前n項和Sn= —a—()+2   (n為正整數(shù)).

(1)證明:a=a+ ().,并求數(shù)列{a}的通項

(2)若=,T= c+c+···+c,求T.

 

【答案】

⑴a=. ⑵T=3—.

 

【解析】本試題主要是考查了數(shù)列通項公式的求解以及數(shù)列的求和的綜合運用。

(1)因為數(shù)列{a}的前n項和Sn= —a—()+2   (n為正整數(shù)).

利用前n項和與通項公式的 關系得到a=a+ ().,并求數(shù)列{a}的通項

(2)根據(jù)第一問得到=,然后運用錯位相減法得到數(shù)列的和式。

解:⑴由S= —an—(+2,得S= —a—()+2,兩式相減,得a=

—a+ a+(),即a=a+().---------------------------------------2分

因為S= —a—(+2,令n=1,得a=.對于a=a+(),兩端同時除以(),得2a=2a+1,即數(shù)列{2a}是首項為2·a=1,公差為1的等差數(shù)列,故2a=n,所以a=.------------------------------------6分

⑵由⑴及=,得c= (n+1)(),

  所以T=2×+3×(+4×(+···+(n+1) (),①

  T=2×(+3×(+4×(+···+(n+1) (),②

  由①—②,得

  T=1+(+(+···+()-(n+1) ()=1+

  (n+1) ()=.   所以T=3—.------------------------------------12分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案