平面向量
a
b
的夾角為60°,
a
=(1,0),|
b
|=2,則|2
a
-
b
|=
 
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應用
分析:求得向量a的模,運用向量的數(shù)量積的坐標表示和向量的平方即為模的平方,計算即可得到.
解答: 解:
a
=(1,0),即|
a
|=1,
a
b
=|
a
|•|
b
|•cos60°=1×
1
2
=1,
則|2
a
-
b
|=
(2
a
-
b
)2
=
4
a
2
-4
a
b
+
b
2

=
4-4+4
=2,
故答案為:2.
點評:本題考查向量的數(shù)量積的坐標表示和性質(zhì),考查向量的平方即為模的平方,考查運算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求經(jīng)過兩直線2x-y-1=0和2x+y-7=0的交點,且與坐標軸圍成三角形,面積為4的直線方程是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

商場銷售的某種飲品每件成本為20元,售價36元.現(xiàn)廠家為了提高收益,對該飲品進行促銷,具體規(guī)則如下:顧客每購買一件飲品,當即從放有編號分別為1、2、3、4、5、6的六個規(guī)格的小球的密封箱中連續(xù)有放回地摸取三次,若三次取出的小球編號相同,則獲一等獎;若三次取出小球的編號是連號(不考慮順序),則獲二等獎;其它情況無獎.
(1)求某顧客購買1件該飲品,獲得獎勵的概率;
(2)若獎勵為返還現(xiàn)金,顧客獲一次一等獎,獎金數(shù)是x元,若獲一次二等獎,獎金是一等獎獎金的一半,統(tǒng)計表明:每天的銷量y(件)與一等獎的獎金額x(元)的關(guān)系式y(tǒng)=
x
4
+24.問:x設(shè)定為多少最佳?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x-y+1≥0
x+y-1≥0
x≤3
則z=3x-y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將正弦函數(shù)f1(x)=sinx與余弦函數(shù)f2(x)=cosx線性組合成函數(shù)f(x)=Af1(x)+Bf2(x) (A,B是常數(shù),x∈R),函數(shù)f(x)的圖象稱(A,B)曲線.
(1)若(A,B)曲線與(C,D)曲線重合,求證:A=C,B=D;
(2)已知點P1(x1,y1)與點P2(x2,y2)且x1-x2≠kπ(k∈z),求證:經(jīng)過點P1與點P2的(A,B)曲線有且僅有一條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將長為12米的鋼筋截成12段,做成底面為正方形的長方體水箱骨架,設(shè)水箱的高h,底面邊長x,水箱的表面積(各個面的面積之和)為S.
(1)將S表示成x的函數(shù);
(2)根據(jù)實際需要,底面邊長不小于0.25,不大于1.25,當?shù)酌孢呴L為多少時,這個水箱表面積最小值,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰三角形ABC中,AB=AC=1,∠BAC=90°,點E為斜邊BC的中點,點M在線段AB上運動,則
ME
MC
的取值范圍是( 。
A、[
7
16
,
1
2
]
B、[
7
16
,1]
C、[
1
2
,1]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(
1
x
-
x
)6
的展開式中,常數(shù)項是
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若l<x<4,設(shè) a=x
1
2
,b=x
2
3
,c=ln
x
,則a,b,c從小到大的排列為
 

查看答案和解析>>

同步練習冊答案