方程=l(k>0)有且僅有兩個不同的實數(shù)解,φ(>φ),則以下有關(guān)兩根關(guān)系的結(jié)論正確的是
sinφ=φcos
sinφ=-φcos
cosφ=sin
sin=-sinφ
科目:高中數(shù)學(xué) 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南省長沙市雅禮中學(xué)2009屆高三第六次月考數(shù)學(xué)理試卷 題型:044
已知A(1,0),B(-2,0),動點M滿足∠MBA=2∠MAB(∠MAB≠0).
(1)求動點M的軌跡E的方程;
(2)若直線l:y=k(x+7),且軌跡E上存在不同兩點C.D關(guān)于直線l對稱.
①求直線l斜率k的取值范圍;
②是否可能有A、B、C、D四點共圓?若可能,求實數(shù)k取值的集合;若不可能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年普通高等學(xué)校招生全國統(tǒng)一考試山東卷數(shù)學(xué)理科 題型:044
在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F(xiàn),O三點的圓的圓心為Q,點Q到拋物線C的準(zhǔn)線的距離為.
(Ⅰ)求拋物線C的方程;
(Ⅱ)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標(biāo);若不存在,說明理由;
(Ⅲ)若點M的橫坐標(biāo)為,直線l:y=kx+與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當(dāng)≤k≤2時,|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題16分)已知點A(-1, 0)、B(1, 0),△ABC的周長為2+2.記動點C的軌跡
為曲線W.
(1)直接寫出W的方程(不寫過程);
(2)經(jīng)過點(0, )且斜率為k的直線l與曲線W 有兩個不同的交點P和Q,是否存在常數(shù)k,使得向量與向量共線?如果存在,求出k的值;如果不存在,請說明理由.
(3)設(shè)W的左右焦點分別為F1、 F2,點R在直線l:x-y+8=0上.當(dāng)∠F1RF2取最大值時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com