分析 (1)利用遞推關系即可得出.
(2)利用等比數(shù)列的求和公式即可得出.
解答 解:(1)Sn+1=an+1+n2,∴an+1=Sn+1-Sn=an+1+n2-$[{a}_{n}+(n-1)^{2}]$,
化為:an=2n-1.
(2)bn=2an=22n-1=$\frac{1}{2}×{4}^{n}$.
∴{bn}的前n項和Tn=$\frac{1}{2}(4+{4}^{2}+…+{4}^{n})$=$\frac{1}{2}×\frac{4({4}^{n}-1)}{4-1}$=$\frac{2}{3}({4}^{n}-1)$.
點評 本題考查了數(shù)列遞推關系、等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 15 | C. | 20 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com