分析 已知等式利用正弦定理化簡,求出三邊之比,判斷得到C為最大角,利用余弦定理表示出cosC,將三邊長代入求出cosC的值,即可確定出C的度數(shù).
解答 解:在△ABC中,sinA:sinB:sinC=1:1:$\sqrt{3}$,
利用正弦定理化簡得:a:b:c=1:1:$\sqrt{3}$,
設(shè)a=k,b=k,c=$\sqrt{3}$k,
由余弦定理得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{{k}^{2}+{k}^{2}-3{k}^{2}}{2{k}^{2}}$=-$\frac{1}{2}$,
則最大內(nèi)角C度數(shù)為120°,
故答案為:120°
點評 此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,$\sqrt{2}$] | C. | [1,$\sqrt{5}$] | D. | [$\sqrt{5}$,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com