分析 (I)由題意可得2bccosA=a2-b2-c2-2bc,再由余弦定理求出cosA,從而確定A的大;
(II)利用三角形的面積公式S=$\frac{1}{2}$bcsinA得bc=16;再由余弦定理得b2+c2+bc=48,聯(lián)立求出b、c.
解答 解:(Ⅰ)由題意可得2bccosA=a2-b2-c2-2bc,
由余弦定理a2=b2+c2-2bccosA得4bccosA=-2bc,
∴cosA=-$\frac{1}{2}$,∵0<A<π,∴A=$\frac{2π}{3}$.
(Ⅱ)∵sinA=$\frac{\sqrt{3}}{2}$,cosA=-$\frac{1}{2}$,
∴S=$\frac{1}{2}bcsinA$=4$\sqrt{3}$,∴bc=16,
a2=b2+c2-2bccosA?b2+c2+bc=48,
∴b=c=4,
故b=4,c=4.
點評 本題考查余弦定理的應(yīng)用,考查三角形的面積公式的應(yīng)用,結(jié)合題設(shè)條件,利用余弦定理求出角A的大小是解答本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x,$\frac{y}{x}=1$ | B. | y=2x,$y=2\sqrt{x^2}$ | C. | |y|=|x|,$\sqrt{y}=\sqrt{x}$ | D. | |y|=|x|,y2=x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | 9 | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com