對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù)”.這個函數(shù)[x]叫做“取整函數(shù)”,則[lg1]+[lg2]+[lg3]+[lg4]+…+[lg2009]=
4920
4920
分析:由于[lg1]=[lg2]=[lg3]=[lg4]=…=[lg9]=0,有9個0;[lg10]=[lg11]=…[lg99]=1,有90個1;[lg100]=[lg101]=…=[lg999]=2,有900個2;[lg1000]=[lg1001]=…=[lg2009]=3,有1010個3,代入可求和可得答案.
解答:解:∵[lg1]=[lg2]=[lg3]=[lg4]=…=[lg9]=0,有9個0
[lg10]=[lg11]=…[lg99]=1,有90個1
[lg100]=[lg101]=…=[lg999]=2,有900個2
[lg1000]=[lg1001]=…=[lg2009]=3,有1010個3
則[lg1]+[lg2]+[lg3]+[lg4]+…+[lg2009]=9×0+90×1+990×2+1010×3=4920
故答案為:4920
點評:本題以新定義為載體,主要考查了對數(shù)函數(shù)值的基本運算,解題的關(guān)鍵 是對對數(shù)值準(zhǔn)確取整
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是“不超過x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),[x]就是x,當(dāng)x不是整數(shù),[x]是點x左側(cè)的第一個整數(shù)點,這個函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù),如[-2]=-2,[-1.5]=-2,[2.5]=2,則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]+…+[log216]的值為( 。
A、28B、32C、33D、34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3,這個函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實踐中有廣泛的應(yīng)用,那么[log31]+[log32]+[log33]+…+[log3243]的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),這個函數(shù)[x]叫做“取整函數(shù)”,那么[log31]+[log32]+[log33]+[log34]+…+[log3243]=
857

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列一段材料,然后解答問題:對于任意實數(shù)x,符號[x]表示“不超過x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),[x]就是x,當(dāng)x不是整數(shù)時,[x]是點x左側(cè)的第一個整數(shù)點,這個函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù);如[-2]=-2,[-1.5]=-2,[2.5]=2;則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
+[log216]的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),則[log21]+[log22]+[log23]+[log24]+[log25]=
 

查看答案和解析>>

同步練習(xí)冊答案