如圖,

在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0.
(2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且·=0,求D2+E2-4F的值.
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點(diǎn)O,G,H是否共線,并說(shuō)明理由.

(1)見(jiàn)解析   (2)64  (3) O,G,H三點(diǎn)必定共線,理由見(jiàn)解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2014·廣州模擬)已知☉M:x2+(y-2)2=1,Q是x軸上的動(dòng)點(diǎn),QA,QB分別切☉M于A,B兩點(diǎn).
(1)如果|AB|=,求直線MQ的方程.
(2)求證:直線AB恒過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

直線l過(guò)點(diǎn)(-4,0)且與圓(x+1)2+(y-2)2=25交于A,B兩點(diǎn),如果AB=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的方程:,其中
(1)若圓C與直線相交于,兩點(diǎn),且,求的值;
(2)在(1)條件下,是否存在直線,使得圓上有四點(diǎn)到直線的距離為,若存在,求出的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的方程為:,直線的方程為,點(diǎn)在直線上,過(guò)點(diǎn)作圓的切線,切點(diǎn)為

(1)若,求點(diǎn)的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)的直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程;
(3)求證:經(jīng)過(guò)(其中點(diǎn)為圓的圓心)三點(diǎn)的圓必經(jīng)過(guò)定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩點(diǎn),點(diǎn)為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若點(diǎn)是動(dòng)點(diǎn)的軌跡上的一點(diǎn),軸上的一動(dòng)點(diǎn),試討論直線
與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x-1上,過(guò)點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使|MA|=2|MO|,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的方程為,直線的方程為,點(diǎn)在直線上,過(guò)點(diǎn)作圓的切線,切點(diǎn)為.
(1)若,試求點(diǎn)的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)為,過(guò)作直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓,點(diǎn).

(1)求圓心在直線上,經(jīng)過(guò)點(diǎn),且與圓相外切的圓的方程;
(2)若過(guò)點(diǎn)的直線與圓交于兩點(diǎn),且圓弧恰為圓周長(zhǎng)的,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案